
International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Articles available online http://www.ijoer.in

Vol.3., Issue.3, 2015

202 G.S.MONISHA, M.JAGADEESWARI

I.INTRODUCTION

An FPGA is a type of integrated circuit (IC) that can

be programmed for different algorithms after

fabrication. Modern FPGA devices consist of up to

two million logic cells that can be configured to

implement a variety of software algorithms.

An FPGA provides significant cost advantages in

comparison to an IC development effort and offers

the same level of performance in most cases [4].

Today’s systems demand greater functionality in less

space and at reduced cost. In addition, each

generation of Xilinx FPGAs delivers higher

performance and increased capabilities. Although

Xilinx FPGAs support direct configuration from third-

party flash, an embedded processor-based

configuration solution can allow for advanced FPGA

configuration applications[1]. Xilinx 7 series FPGAs

are configured by loading application-specific

configuration data a bitstream into internal

memory. 7 series FPGAs can load themselves from

an external nonvolatile memory device or they can

be configured by an external smart source, such as a

microprocessor, DSP processor, microcontroller, PC,

or board tester[2]. The FPGAs can be configured

directly from the Flash Memory using

Microprocessor. This method is to store the user

firmware as well as the configuration bitfile on a

flash memory device attached to a microprocessor.

The microprocessor reads the bitfile through an SPI

interface and in turn sends out the bitstream to the

FPGA via a slave Serial or Slave SelectMAP interface.

This eliminates the need for an extra PROM for

FPGA configuration.

II.RELATED WORK

This survey will provide critical reviews, concepts,

advantages and disadvantages among survey

results. This contribution adds more thoughtful

ideas in configuring an FPGA. Matt Nelson et.al in [1]

RESEARCH ARTICLE ISSN: 2321-7758

SPI FLASH MEMORY CONFIGURATION IN ZYNQ FPGA USING MICROPROCESSOR

G.S.MONISHA1,M.JAGADEESWARI2
1,2ECE-PG,SREC,Coimbatore,Tamilnadu,India

Article Received:06/05/2015 Article Revised on:10/05/2015 Article Accepted on:14/05/2015

ABSTRACT

FPGA becoming more popular, many designers want to reduce their component

count and increase flexibility. To accomplish both of these goals, a microprocessor

already available in the system can be used to configure an FPGA. Here is a simple

and efficient FPGA configuration method that utilizes a microprocessor to

configure an FPGA device from a Serial Peripheral Interface (SPI) flash memory.

This method reduces hardware components, board space, and costs. Application

firmware are included to illustrate the methodology.

keyword: Embedded development Kit, Software Development Kit, Field

Programmable gate array, Master Out Slave In, Master In Slave Out, Quad Serial

Peripheral Interface, Serial Peripheral Interface, Serial Clock, Slave Select.

©KY Publications

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Articles available online http://www.ijoer.in

Vol.3., Issue.3, 2015

203 G.S.MONISHA, M.JAGADEESWARI

implemented the configuration of FPGA from an

embedded processor. In this the microprocessor

whose primary purpose is to perform other tasks

can also be used to coordinate the loading of

configuration data into a Xilinx FPGA. The processor

provides greater flexibility, for example, in choosing

which of multiple configuration files to program into

the FPGA Microprocessor configuration of 7 series

FPGAs is accomplished in either Slave Serial or Slave

SelectMAP mode. Mattics Phi et.al in [2] configured

the FPGA by loading application-specific

configuration data a bitstream into internal

memory. 7 series FPGAs can load themselves from

an external nonvolatile memory device or they can

be configured by an external smart source, such as a

microprocessor, DSP processor, microcontroller, PC,

or board tester. He described two datapaths for

FPGA configuration. Arthur Yang et.al in [3]

implemented the configuration of FPGA using serial

peripheral interface(SPI). Here he described the

advantages of selecting a serial peripheral interface

(SPI) flash as the configuration memory storage for

the Xilinx 7 series FPGAs. ISE Design Suite has been

used for in-system programming of the SPI flash via

the FPGA. This allows for configuration flexibility

during the debugging stages of development. In this

paper Quad Serial Peripheral Interface(QSPI) is used.

The SPI flash memories use a 4-wire synchronous

serial data bus. The SPI flash configuration requires

only four pins, which allows 1- or 2-bit data width

for delivery of the configuration bitstream. QSPI

flash devices provides six pins to enable 4-bit data

width, thereby decreasing configuration time

appropriately.

III.PROPOSED SPI FLASH MEMORY

CONFIGURATION IN ZYNQ FPGA

Today’s systems demand greater functionality in less

space and at reduced cost. In addition, each

generation of Xilinx FPGAs delivers higher

performance and increased capabilities. For

reducing the hardware component, board space and

cost, a simple and efficient FPGA configuration

method that utilizes a microprocessor to configure

an FPGA device from a Serial Peripheral Interface

(SPI) flash memory is used. In this method the user

application firmware as well as the configuration

bitfile are stored on a flash memory device attached

to a microprocessor. The microprocessor reads the

bitfile through an SPI interface and in turn sends out

the bitstream to the FPGA via a slave Serial or Slave

SelectMAP interface. This eliminates the need for an

extra PROM for FPGA configuration.

Figure 1: Block Diagram of SPI Flash Memory

configuration

The flash memory attached to the microprocessor

stores the user application firmware and FPGA

bitfiles. However the microprocessor does not

configure the FPGA through the FPGA configuration

port directly. Instead, the FPGA slave serial DIN and

CCLK pins connect to the SPI bus between the flash

memory and the microprocessor. Configuration by

this method is possible because the slave serial

interface and configuration sequence are

compatible with SPI protocol coincidentally.

IV. SERIAL PERIPHERAL INTERFACE

Xilinx FPGAs require that a configuration bitstream is

delivered at power-up. The SPI flash memories use a

4-wire synchronous serial data bus. The SPI flash

configuration requires only four pins, which allows

1- or 2-bit data width for delivery of the

configuration bitstream. The QSPI

flash devices provides six pins to enable 4-bit data

width, thereby decreasing configuration time

appropriately. FPGA configuration via the SPI

interface is a very low pin

count configuration solution.

Figure 2: General Block of SPI

The SPI bus is a synchronous serial communication

interface specification used for communication

between the Flash Memory and the Zynq FPGA.

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Articles available online http://www.ijoer.in

Vol.3., Issue.3, 2015

204 G.S.MONISHA, M.JAGADEESWARI

SPI communicate in full duplex mode using a master

slave architecture with a single master. The master

device originates the frames for reading and writing.

Multiple slave device are supported through

selection with individual slave select (SS).

The SPI bus specifies four logic signals:

 Serial Clock(SCLK) provides the output from

the master

 Master Out Slave In(MOSI) provides output

from master

 Master In Slave Out(MISO) provides output

from slave

 Slave Select(SS) when active low it provides

output from master

The SPI bus can operate with a single master device

and with one or more slave devices. If a single slave

device is used the SS pin can be fixed to logic low. If

there are multiple slave devices an independent SS

signal is required from the master for each slave

devices.

 IV.1 DATA TRANSMISSION

To begin communication, the bus master configures

the clock, using a frequency supported by the slave

devices, typically up to a few MHz. the master then

selects the slave device with a logic level 0 on the

select line. During each SPI clock cycle, a full duplex

transmission occurs. The master sends a bit on the

MOSI line and the slave reads it, while a slave sends

a bit on the MISO line and the master reads it.

Figure 3: Block Diagram for Data Transmission

Transmission normally involves two shift registers of

some given word size such as 8bit, one in the master

and one in the slave. They are connected in a virtual

ring topology. Data is usually shifted out with the

most significant bit first, while shifting a new least

significant bit into the same register. After the

registers have been shifted out, the master and

slave have exchanged register values.

If more data needs to be exchanged, the shift

registers are reloaded and the process repeats.

Transmission may continue for any number of clock

cycles. When complete, the master stops toggling

the clock signal, and typically deselects the slave.

Using ISE Design Suite 14.6 the master slave has

been designed and simulated

Figure 4: Simulation Result for Master

Figure 5: Simulation Result for Slave

V. DESIGN OF MICROBLAZE USING EMBEDDED

DEVELOPMENT KIT(EDK)

The MicroBlaze soft core processor is highly

configurable, which allows to select a specific set of

features required for the application firmware.

MicroBlaze instructions are 32 bits and are defined

as either Type A or Type B. Type A instructions have

up to two source register operands and one

destination register operand. Type B instructions

have one source register and a 16-bit immediate

operand (which can be extended to 32

bits by preceding the Type B instruction). Type B

instructions have a single destination register

operand.

MicroBlaze is implemented with a Harvard memory

architecture; instruction and data accesses are done

in separate address spaces. Each address space has

a 32-bit range (that is, handles up to 4-GB of

instructions and data memory respectively). The

instruction and data memory ranges can be made to

overlap by mapping them both to the same physical

memory. The MicroBlaze instruction and data

caches can be configured to use 4 or 8 word cache

lines. When using a longer cache line, more bytes

are prefetched, which generally improves

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Articles available online http://www.ijoer.in

Vol.3., Issue.3, 2015

205 G.S.MONISHA, M.JAGADEESWARI

performance for software with sequential access

patterns. However, for software with a more

random access pattern the performance can instead

decrease for a given cache size. This is caused by a

reduced cache hit.

Many aspects of the MicroBlaze can be user

configured: cache size, pipeline depth (3-stage or 5-

stage), embedded peripherals, memory

management unit, and bus-interfaces can be

customized. The area-optimized version of

MicroBlaze, which uses a 3-stage pipeline, sacrifices

clock frequency for reduced logic area. The

performance-optimized version expands the

execution pipeline to 5 stages, allowing top speeds

of 210 MHz.

Figure: 6 Vivado Block Design Diagram

By using XPS (Xilinx Platform Studio) the

microprocessor’s hardware specification and

configuration is achieved. With the help of XPS the

designer's platform specification is converted into a

synthesizeable RTL description and a set of coding

(Verilog or VHDL), is written to automate the

implementation of the application firmware(from

RTL to the bitstream-file.)

Figure 7: Synthesis report

Figure: 8 Implementation and routing report

In Vivado after synthesis and implementation the

timing report, synthesis, implementation and

routing reports are taken.

Figure: 9 Design Timing Report

Figure: 10 Power Report

Using the SDK(Software Development Kit) the

generated bitfile of the application is dumped into

the Zynq FPGA and made to read the application.

The example application used here is to change the

intensity of the LED with four bits which will have

sixteen level of changes.

VI.CONCLUSION

The SPI flash is a low-pin count and simple solution

for configuring zynq FPGAs. Support of indirect

programming enhances ease of use by allowing in-

system programming updates of the SPI flash by

reusing connections already required for the

configuration solution. A unique FPGA configuration

that reduces hardware and application firmware

requirements of a typical system that contains a

microprocessor, flash memory and FPGA has been

http://en.wikipedia.org/wiki/MHz
http://en.wikipedia.org/wiki/Register_transfer_level
http://en.wikipedia.org/wiki/Verilog
http://en.wikipedia.org/wiki/VHDL

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Articles available online http://www.ijoer.in

Vol.3., Issue.3, 2015

206 G.S.MONISHA, M.JAGADEESWARI

designed. It leverages the compatibility between the

FPGA serial configuration mode and SPI

memory. Upto flash memory capacity the number of

applications can be read.

ACKNOWLEDGMENT

I authors would like to think Sri Ramakrishna

Engineering College for providing us full support

REFERENCES

[1]. Using a Microprocessor to Configure 7

Series FPGAs via Slave Serial or Slave

SelectMAP Mode(XAPP583)

[2]. 7 Series FPGAs Configuration User Guide

(UG470)

[3]. Using SPI Flash with 7 Series FPGAs

(XAPP586)

[4]. Introduction to FPGA Design with Vivado

HLS(UG998)

[5]. MicroBlaze Processor Reference Guide

(UG081)

[6]. Vivado® Design Suite User Guide: High-

Level Synthesis (UG902)

[7]. AXI Reference Guide (UG761)

[8]. 7 Series FPGAs Configuration User

Guide(UG470)

[9]. Vivado Design Suite Video Tutorials

(www.xilinx.com/training/vivado/index.htm)

[10]. 7 Series FPGAs Overview(DS180)

http://www.xilinx.com/training/vivado/index.htm

