
International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Articles available online http://www.ijoer.in

Vol.3., Issue.5., 2015
(Sept.-Oct.)

191 GOPI KISHAN TIWARI, NITESH DODKEY

INTRODUCTION

 With the development of information

technology and widespread used, the security of

sensitive data on Internet is especially important.

Traditional cryptographic methods have failed to

meet the requirements, especially to its security,

speed and efficiency. The advanced encryption

standard (AES) was adopted to replace the data

encryption standard (DES) in 2000. AES specifies a

federal information processing standard (FIPS)

approved cryptographic algorithm that can be used

to protect electronic data. AES is an unclassified

publicly disclosed encryption algorithm available

royalty free worldwide. This standard specifies the

Rijndael algorithm. It is a symmetric block cipher that

can encrypt and decrypt information. The data block

that AES encrypt/decrypt is of 128 bit using 128, 192

or 256 bit cipher key. The original Rijndael algorithm

support variable data block size and cipher block size

but it was not taken by AES. So the Rijndael algorithm

is taken as 128, 192 and 256 by AES and hence it is

called AES 128, AES 192 and AES 256.

 AES can be implemented in software or hardware

but, hardware implementation is used in real time

application. Main goal of AES hardware

implementation is to minimize hardware and lower

the power consumption also maintain high

throughput at highest operating frequency.

 AES hardware implementation is very

reliable, fast and conveniently suitable for high speed

applications. It does not require system resources

used in software during encryption or decryption

process. Economically AES hardware implementation

has low costs compared to software implementation

which requires update. Hardware encrypted drives

can easily reset which reduces down time in erasing

data which gives better system performance. [1]

AES Framework

 Table 1 shows the structure of Rijndael

Algorithm adopted by AES. AES uses the data block of

128 bits and Cipher key of 128, 192 or 256. The

number of rounds for AES 128, AES 192 and AES 256

are 10, 12 and 14 respectively. In each round a same

set of operations are performed [2].

RESEARCH ARTICLE ISSN: 2321-7758

HARDWARE EFFICIENT IMPLEMENTATION OF AES-128 ON FPGA

GOPI KISHAN TIWARI1, NITESH DODKEY2
1M.Tech student, Dept. of Electronics and Communication Engineering, Surbhi group of Institute,

India
2HOD, Dept. of Electronics and Communication Engineering, Surbhi group of Institute, India

ABSTRACT

This paper presents the implementation of 128 bit AES encryption and decryption.

The implementation is optimized in order to reduce area and delay. In order to

reduce FPGA resource usage (area) we have reduced the number of xtime

operations in the mix_column process. This will also reduce the gate count and

hence also participate in reducing delay. Also sequential shifters in shift_row

process are replaced by barrel shifters to increase maximum operating frequency.

The target device is Spartan 3 XC3S1000L speed grade -4.

Keywords—AES – 128, FPGA, Rijndael Algorithm, FIPS – 197

 ©KY PUBLICATIONS

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Articles available online http://www.ijoer.in

Vol.3., Issue.5., 2015
(Sept.-Oct.)

192 GOPI KISHAN TIWARI, NITESH DODKEY

Table 1: Structure of AES

AES type

Structure of AES

Cipher Key

Length

Data Block

Size

Number of

rounds

AES 128 128 128 10

AES 192 192 128 12

AES 256 256 128 14

Encryption in AES

 The process of encryption begins with the

conversion of 128 bit data to a 4 x 4 state matrix of

16 bytes. Similarly the input cipher key is also

converted to a 4 x 4 matrix of 16 bytes. For AES –

128, the cipher key matrix size of 16 byte is same the

cipher key size 128 bits (16 bytes). For AES 192 and

AES 256, the first 128 bits (16 bytes) are used in first

round and the remaining bits are used in next round.

The set of operations performed in each round are

listed below.

1. Add_Round_key: in this operation the state

matrix is xored with the cipher key matrix and

a new state matrix is formed.

2. Sub_bytes: in this operation each byte of

state matrix is replaced by a byte form a 256

byte table called SBOX.

3. Shift_rows: State matrix has 4 rows, in this

operation the first row is not shifted, the

second row is shifted left cyclically by 1 byte,

the third row is shifted left cyclically by 2

bytes and the fourth row is left shifted

cyclically by 3 bytes.

4. Mix_column: A linear transformation is used

in this process. The mix column is process is

used in 4 columns.

 In this work, AES 128 is implemented, for

AES 128, the number of rounds are 10. Figure 1

shows the process of encryption for AES 128. First

the input matrix is added with the cipher key. Then in

round 1 to round 9, 4 operations are repeated –

sub_byte, shift_rows, mix column and

add_round_key. In round 10 only sub_byte,

shift_rows and add_round_key operation is

performed. In each add_round_key operation a new

cipher key is needed. This new cipher key is

generated in parallel with the encryption process

using key expansion logic. The same algorithm can

be used for AES 192 and AES 256, just by increasing

the number of rounds to 12 and 14 respectively from

10. The key expansion logic for AES 256 is slightly

different. [6]

Figure 1: AES 128 encryption algorithm

B. Decryption in AES

Figure 2 shoes the process of decryption in AES 128.

The decryption process in AES is opposite to

encryption process. The set of operation needed for

decryption are listed below:

1. Add_round_key: this operation is exactly same

to the add_round_key operation used in

encryption. The encrypted data is xored with the

cipher key.

2. Inv_Sub_bytes: in this operation each byte of

state matrix is replaced by a byte form a 256

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Articles available online http://www.ijoer.in

Vol.3., Issue.5., 2015
(Sept.-Oct.)

193 GOPI KISHAN TIWARI, NITESH DODKEY

byte table called inv_SBOX. This SBOX is different

from the one used in encryption.

3. Inv_Shift_rows: State matrix has 4 rows, in this

operation the first row is not shifted, the second

row is shifted right cyclically by 1 byte, the third

row is shifted right cyclically by 2 bytes and the

fourth row is right shifted cyclically by 3 bytes.

4. Inv_Mix_column: A linear transformation is used

in this process. The inv_mix_columns is process

is used in 4 columns. This is different from the

one used in encryption.

Figure 2: AES 128 decryption algorithm

 The decryption process in AES is opposite to

encryption process. The set of operation needed for

decryption are listed below:

1. Add_round_key: this operation is exactly

same to the add_round_key operation used

in encryption. The encrypted data is xored

with the cipher key.

2. Inv_Sub_bytes: in this operation each byte of

state matrix is replaced by a byte form a 256

byte table called inv_SBOX. This SBOX is

different from the one used in encryption.

3. Inv_Shift_rows: State matrix has 4 rows, in

this operation the first row is not shifted, the

second row is shifted right cyclically by 1

byte, the third row is shifted right cyclically by

2 bytes and the fourth row is right shifted

cyclically by 3 bytes.

4. Inv_Mix_column: A linear transformation is

used in this process. The inv_mix_columns is

process is used in 4 columns. This is different

from the one used in encryption.

The process of decryption is slightly different from

the encryption; here the input is encrypted data. First

the cipher key is expanded, this input cipher key is

the same input key used in encryption process, the

input cipher key is expanded to form 10 new keys K1

to K10 using a process called key_schedule. The

process of decryption stars from the bottom, here

the K10 key is used first, then K9, K8 and so on. At

last the input cipher key is used to generate the

decrypted data (plain text). A total of 11 keys are

used in the process of encryption and decryption.

AES – 128 Hardware Implementation

In this section the hardware implementation of AES –

128 is discussed. The high level block diagram is

shown in figure 3. Eight blocks are used mainly; the

hardware implementation of each of these eight

blocks is discussed.

 Figure 3: High Level Block Diagram AES-128

 Add_round

unit

AES Encryption

Unit

Round (1 to 9)

AES Encryption

unit

Round 10

Controller

Key

Expansion

unit

AES Decryption

unit

Round 10

AES Decryption
Unit

Round (1 to 9)

Add_round

unit

Plain Text Plain Text
Cipher Key

Cipher Text Cipher Text

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Articles available online http://www.ijoer.in

Vol.3., Issue.5., 2015
(Sept.-Oct.)

194 GOPI KISHAN TIWARI, NITESH DODKEY

1. Add_round_key unit: This unit has an array of

XOR gates, which performs bit by bit XOR

operation. This operation is used in Add_round

unit (both encryption and decryption),

AES_encryption unit (round 1 to 9),

AES_encryption unit (round 10),

AES_decryption unit (round 1 to 9) and

AES_decryption unit (round 10).

2. AES_encryption unit (round 1 to 9): This unit

has four internal units: add_round unit,

Sub_bytes unit, Shift_rows unit, Mix_Column

unit. add_round unit has already been

discussed, remaining three units are discussed.

A. Sub_byte unit: In this unit a memory table

called SBOX is used. This SBOX table has 256

entries arranged in a matrix form of size 16 x

16. [6]. The input state matrix to the sub_byte

unit has 16 (4 x 4) bytes, these 16 bytes are

replaced by the values stored in SBOX. To

replace all these 16 bytes simultaneously 16

such SBOX are used. This will reduce delay.

B. Shift_rows unit: In this unit three shifters are

used to shift last three rows. The first shifter is

set to shift by left by one byte, the second

shifter is set to shift row by 2 bytes and the

third shifter is set to shift the row by 3 bytes.

Employing three parallel shifters will reduce

delay. Figure 3 shows the arrangement of state

matrix after shift rows.

Figure 3: Arrangement of state after shift_rows

C. Mix_column unit: In mix column a linear

transformation is applied to the state matrix.

The input state matrix to the mix_unit and the

output matrix are depicted in figure 4.

Figure 4: Arrangement of state after Mix_column

Each column of the state matrix is multiplied (galios

multiplication) by constant 4 x 4 matrix and a new

column matrix is formed, the new column replaces

the old column.

𝑠0𝑐′
𝑠1𝑐′
𝑠2𝑐′
𝑠3𝑐′

 =

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

𝑠0𝑐
𝑠1𝑐
𝑠2𝑐
𝑠3𝑐

S0c’ = ({02}. Soc) xor ({03}.S1c) xor S2c xor s3c

S0c’ = ({02}. Soc) xor (S1c xor ({02}.S1c)) xor S2c xor

s3c

The original equation requires x_time(2) and

x_time(3) operation, whereas in this work we have

replaced all x_time(3) operation by a x_time(2) and

XOR gate. X_time(3) is comparatively complex to

x_time(2), this results in the reduction of FPGA

resources. The remaining three equations are listed

below along with their reduced form.

S1c’ = s0c xor ({02}. S1c) xor ({03}.S2c) xor s3c

S1c’ = S0c xor ({02}. S1c) xor ({02}.s20) xor s20 xor s3c

S2c’ = S0c xor S1c xor ({02}.S2c) xor ({03}.s3c)

S2c’ = S0c xor S1c xor ({02}.S2c) xor ({02}.S3c) xor s3c

S3c’ = ({03}.S0c) xor S1c xor .S2c xor ({02}.s3c)

S3c’ = ({02}.S0c) xor s0c xor S1c xor .S2c xor ({02}.s3c)

Figure 5 shows the logic diagram for mix_column

operation for a single column.

The x_time(2) operation is simple, first the input byte

is shifted by 1 bit and the MSB of input byte is

checked, if it is 1 then the shifted output is XORED

with 1B to produce the output else the shifted byte is

the final output of x_time(2).

Figure 5 shows the mix_column operation for one

single column, 4 such logic units are required to

produce the mix_column output for the complete 4 x

4 matrix.

3. AES_encryption unit (round 10): AES last round

consists of only three operation sub_bytes,

Shift_rows and Add_round_key. The mix

column operation is absent in this particular

round.

4. AES_Decryption unit (round 1 to round 9): The

process of decryption is the inverse of

encryption. The input to decryption is the

cipher text (encrypted data) and the cipher key

(the cipher key used here is exactly the same

used for encryption).This unit has four internal

units: add_round unit, inv_Sub_bytes unit,

inv_Shift_rows unit, inv_Mix_Column unit.

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Articles available online http://www.ijoer.in

Vol.3., Issue.5., 2015
(Sept.-Oct.)

195 GOPI KISHAN TIWARI, NITESH DODKEY

A. Inv_Sub_byte unit: In this unit a memory table

called inv_SBOX is used. This inv_SBOX table

has 256 entries arranged in a matrix form of

size 16 x 16. [6]. The input state matrix to the

inv_sub_byte unit has 16 (4 x 4) bytes, these 16

bytes are replaced by the values stored in

inv_SBOX. To replace all these 16 bytes

simultaneously 16 such inv_SBOX are used. This

will reduce delay. The table used in inv_SBOX

for decryption is different from the table used

in SBOX for encryption.

Figure 5: Mix_coulumn – Logic diagram

B. Inv_Shift_rows unit: In this unit three shifter are

used to shift last three rows. The first shifter is

set to shift right (opposite to left used in

encryption) by one byte, the second shifter is

set to shift row by 2 bytes and the third shifter

is set to shift the row by 3 bytes. Employing

three parallel barrel shifters will reduce delay.

Figure 6 shows the arrangement of state matrix

after inv_shift rows.

Figure 6: Arrangement of state after

inv_shift_rows

C. Inv_Mix_column unit: Inv_mix_column unit is

the inverse of mix_column unit present in

encryption. Figure 7 shows the transformation.

Each column of the state matrix is multiplied

(galios multiplication) by constant 4 x 4 matrix

and a new column matrix is formed, the new

column replace the old column.

𝑠0𝑐′
𝑠1𝑐′
𝑠2𝑐′
𝑠3𝑐′

 =

0𝑒 0𝑏 0𝑑 09
09 0𝑒 0𝑏 0𝑑
0𝑑 09 0𝑒 0𝑏
0𝑏 0𝑑 09 0𝑒

𝑠0𝑐
𝑠1𝑐
𝑠2𝑐
𝑠3𝑐

Figure 8 shows the logic diagram of one column

of inv_mix_column. To generate a single

column for different galois multiplier are

required, namely multiply by 0E, 0B, 0D and 09.

The logic diagram of these multipliers is shown

in figure 9. Figure 8 shows the logic diagram for

only one column, to generate the entire four

columns four such logic units are used. This

parallel generation reduces delay.

Figure 7: Arrangement of state after inv_

Mix_column

5. AES_Decryption unit (round 10): AES decyption

last round consists of only three operation

inv_sub_bytes, inv_Shift_rows and

Add_round_key. The inv_mix column operation

is absent in this particular round.

6. Key_expansion_unit: As seen from figure 1 and

figure 2 11 different cipher keys are needed in

every round of encryption and decryption

process. One key out of these 11 is the input

cipher key and the remaining 10 keys are

generated using a key expansion unit. This key

S00 S01 S02 S03 S00 S01 S02 S03

S10 S11 S12 S13 S13 S10 S11 S12

S20 S21 S22 S23 S22 S23 S20 S21

S30 S31 S32 S33 S31 S32 S33 S30

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Articles available online http://www.ijoer.in

Vol.3., Issue.5., 2015
(Sept.-Oct.)

196 GOPI KISHAN TIWARI, NITESH DODKEY

expansion unit performs 4 operations rot_word,

sub_word, rcon, XOR.[6]

Figure 8: Inv_Mix_coulumn – Logic diagram

Figure 9: Galois multipliers – Logic diagram

A. Rot_word unit: The input to this operation is a

row of 4 bytes. These 4 bytes are shifted left by

one byte using a barrel shifter.

B. Sub_word unit: The input to this operation is

also of 4 bytes, each byte of the input is

replaced by a byte form the SBOX table used in

encryption.

C. RCON unit: This is also a memory table which

returns a 4 byte value depending upon the

current round.

7. Controller: A state machine is used to generate

round number (round 1 to round 10) and assign

different inputs to the logic blocks in each

round. The state diagram is shown in figure 10.

R0 to R10 are the states of encryption, at each

rising edge of clock the machine changes state

to next step. Also in each round (round 1 to

round 10) the cipher key is used to produce the

cipher key for next state. During encryption the

cipher key is generated in parallel but during

the process of decryption the cipher keys are

generated during states R0 to R10 and these

keys are used in decryption states d_R0 to

D_R10. The load_op state assigns the state to

the output, a signal en_dp is used here which

determines the mode of machine, if this input

signal is 0 then the selected mode of machine is

encryption else it is decryption. During

encryption R0 to R10 states are used to

produce state matrix and the cipher key is

generated in parallel, the last state of machine

is load_op, so a total of 12 clocks are required

to produce the output. But in the process of

decryption R0 to R10 are used only to produce

cipher key and D_R0 to D_R10 states to decrypt

data. So to decrypt cipher text a total 23 clocks

are required.

Figure 10: Controller – State Diagram

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Articles available online http://www.ijoer.in

Vol.3., Issue.5., 2015
(Sept.-Oct.)

197 GOPI KISHAN TIWARI, NITESH DODKEY

Simulation and Results

The target device used for AES – 128

implementation is spartan3 – XC3S1000L – speed

grade -4. The design is simulated using xilinx 14.1i

ISIM tool. Many input vectors are used to test our

design and it is found working faithfully. Figure 11

depicts the simulation result of AES-128 during

encryption. The input vector (aes_128_i) used here is

“3243f6a8885a308d313198a2e0370734” and the

cipher key (cipher_key) used here is

“2b7e151628aed2a6abf7158809cf4f3c”. The output

(aes_128_o) is

“3925841d02dc09fbdc118597196a0b32”. This input

vectors and cipher key is used in FIPS – 197

document. Figure 12 depicts the simulation of AES-

128 decryption, the cipher text is

“3925841d02dc09fbdc118597196a0b32” the one

produced during encryption, cipher key

“2b7e151628aed2a6abf7158809cf4f3c” used for

decryption is same key used during encryption and

the resultant plain text is

“3243f6a8885a308d313198a2e0370734”. This plain

text is same which was used for encryption. This

validates our design.

The design is synthesized using xilinx XST tool. Table

2 shows the FPGA resources used, these results are

compared with the previous design available in

literature. The maximum operating frequency for this

design for the selected FPGA is 91.349 Mhz.

Figure 11: AES – 128 Encryption – Simulation

Figure 12: AES – 128 Decryption – Simulation

Table 2: Device utilization summary

Resources This Work [11]

Slices 6578 7706

4 input LUTs 11847 14884

As seen from table 2 the resource usage for this

design has been reduced. The numbers of slices are

reduced by more than 14%. And the 4 input LUT

count has been reduced by more than 20%.

Conclusion

Hardware implementation of AES – 128 is

presented in this work. The target device is Spartan 3.

The design is tested using XILINX 14.1 I and simulated

using ISIM. Test vectors of fips document are used to

check for any behavioral errors and no behavioral

errors are found. We have reduced the number of

x_time for the mix column operation this reduces the

FPGA resource usage. Also fast shifters are used in

this design, it decreases the delay.

In future hardware efficiency of AES – 128 can be

improved by reusing resources such as using a single

encryption and decryption block instead of one for

round 1 to round 9 and one for round 10.

REFERENCES

[1]. Hammad I, El-Sankary K, El-Masry E, “High-

speed AES encryptor with efficient merging

techniques,” IEEE Embedded Systems

Letters, 2010, pp.67-71.

[2]. I ZHANG Y L, WANG X G, “Pipelined

implementation of AES encryption based on

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Articles available online http://www.ijoer.in

Vol.3., Issue.5., 2015
(Sept.-Oct.)

198 GOPI KISHAN TIWARI, NITESH DODKEY

FPGA,” 2010 IEEE International Conference

on Information Theory and Information

Security, Piscataway: IEEE, 2010, pp. 170-

173.

[3]. FAN C-P, HWANG J-K, “Implementations of

high throughput sequential and fully

pipelined AES processors on FPGA.” ISPACS

2007: Proceeding of 2007 International

Symposium on International Signal

Processing and Symposium and

Communication Systems, Piscataway: IEEE,

2007, pp. 353-356.

[4]. SKLAVOS N, KOUFOPAVLOU O,

“Architectures and VLSI implementations of

the AES-proposal Rijndael,” IEEE

Transactions on Computers, 2002, 51(12),

pp. 1454-1459.

[5]. BORKAR A M, KSHIRSAGAR R V,

VYAWAHARE M V, “FPGA implementation of

AES algorithm,” The 3rd International

Conference on Electronics Computer

Technology, Piscataway: IEEE, 2011, 3, pp.

401-405.

[6]. Joan Daemen,Vincent Rijmen.AES

Proposal:Rijdael. The Rijndael Block Cipher.

[7]. Vincent Rijmen, “Efficient implementation of

the of the rijndael SBox,” 2000.

[8]. FISCHER V, DRUTAROVSKY M, CHODOWIEC

P, “InvMixColunm decomposition and

multilevel resource sharing in AES

implementations,” IEEE Transactions on

Very Large Scale Integration Systems, 2005,

13(8), pp. 989-992.

[9]. Chien M Ta, Chee Hong Yong, Wooi Gan

Yeoh, “A 2.7mW, 0.064mm2linear-in-dB

VGA with 60dB tuningrange, 100MHz

bandwidth, and two DC offset cancellation

loops,” IEEE International

[10]. Workshop on Radio Frequency Integration

Technology, Austria: Graz, 2005, pp. 74-77.

[11]. J.Balamurugan, Dr.E.Logashanmugam “High

Speed Low Cost Implementation of

Advanced Encryption Standard on FPGA”

ICCET 2014.

