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I. INTRODUCTION 

Electrocardiography (ECG) is the recording of the 

electrical activities of the heart and it uses the 

primary measure for identifying various heart 

diseases and heart abnormalities.It is very important 

for screening and diagnosis of many diseases. 

However, the presence of noises in ECG signals will 

affect the visual diagnosis and feature extraction. For 

its importance, an ECG signal should be presented as 

clean and clear as possible. 

 
Fig.1 Ideal ECG signal. 

 

As an electrical signal, ECG is susceptible to 

different kinds of noise. The main sources of this 

noise are electrical activities of other body muscles, 

baseline shift because of respiration, poor contact of 

electrodes, and equipment or electronic devices. 

There are different types of methods to denoise the 

ECG signals. As the ECG signal is a non stationary 

signal and the methods which are efficient are taken.  

The wavelet transforms uses the filter bank 

concept and uses wavelet thresholding. Many digital 

filtering concepts were used for denoising. In FFT it 

loses its signal information in time domain and in IIR 

the drawbacks are it takes more memory, filtering 

time and also can’t filter non-linear signals. But 

Adaptive filtering is used with ECG signals for noise 

cancelation. It gives faster filtering responses and 

gets less residual errors. In adaptive the LMS 

algorithm is not able to track the rapid changes in the 

ECG. The best adaptive filtering method is RLS 

adaptive filtering method for noise cancellation. 

Savitzky-Golay and EMD are used in smoothing ECG 
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Signals. In this paper, an ECG denoising method 

employing noise reduction algorithms of DWT and 

RLS adaptive filtering is presented. The simulation 

results show that the proposed method is able to 

reduce noise from the noisy ECG signals more 

accurately when compared to other methods. 

II. RLS ADAPTIVE FILTERING 

Adaptive filtering is one which can automatically 

design itself and can detect system variations in time 

using the input signal. It uses iterative computations 

to minimize the error between the desired and 

output signals. The basic ideal adaptive filter predicts 

the noise in the primary signal x(n) and subtracts it. 

Here the primary signal is the combination of input 

signal and noise and the desired response is another 

ecg reference signal which is correlated to the 

primary signal. 

 
Fig.2 Adaptive filter. 

x(n) = input  signal 

y(n) = output  signal 

d(n) = desired signal 

e(n) = error signal 

 

 

 

 

Where 

X(n) = [x(n),x(n-1),….,x(n-L+1)] is the filter tap input 

vector  

W(n) = [w0(n),w1(n),….,wL-1(n)]
T
 is the filter tap weight 

vector 

Here the objective of this filtering is to choose the 

weight vector of the filter so that the output signal is 

close to the estimate. Then   

e(n) =  d(n) – y(n) 

e(n) = d(n) – Wᵀ(n)X(n) 

The modified or updated tap weight vector is 

ŵ(n) = ŵ(n-1) + k(n)ξ*(n) 

Here        k(n) = kalman  gain vector 

ξ(n) = d(n) – ŵ
H
(n-1)u(n) 

And the gain vector is  

 

K(n) =     

π(n) = P(n-1)u(n) 

ŵ(n) = ŵ(n-1) + k(n)ξ*(n) 

P(n) = λ
-1

 P(n-1) – λ
-1

 k(n) u
H
(n) P(n-1) 

Where λ is forgetting factor (0< λ<1) 

P(n) is inverse correlation matrix of input signal 

The initial value of p(n) is  

P(0) = 𝛿−1I 

I is identity matrix and 𝛿 is regularization factor. 

III. DISCRETE WAVELET TRANSFORM 

Wavelet transform is used to process the non 

stationary signals. It represents both the time and 

frequency representations. It allows only change in 

time extension not in shape of the signal. It 

represents the time functions in simple blocks called 

wavelets. A wavelet is an oscillation with amplitude 

that begins at zero, increases and then decreases 

back to zero. The wavelets are orthogonal, 

orthonormal, or biorthogonal, scalar or multi 

wavelets. In discrete wavelets for analyzing both the 

low and high frequency components, the filter bank 

tree decomposition and reconstruction is used. In 

this process the input signal is decomposed by 

repeatedly filtering through a pair of low pass filter 

(LPF) and a high pass filter (HPF). After filtering it was 

passed through down sampler at decomposition and 

up sampler at reconstruction. Sampling is done not to 

lose the information. This filtering is repeated base 

on the required levels. The discrete wavelet 

transform and its inverse is 

 

 

Here 𝜑(t) is scaling function 𝛹(t) is wavelet function 

h(n) , g(n) coefficients of LPF and HPF 

𝑑𝑗 (n), 𝑐𝐿(n) are detail and approximation coefficients 

 
Fig.3 Decomposition. 
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Fig.4 Reconstruction. 

 

The signals of the LPF are the approximation 

coefficients (𝐴𝑘 ) and the signals of the HPF are the 

detail coefficients (𝐷𝑘 ).The approximation 

coefficients are related to the low frequency part of 

the signal, which contains the main features and 

information. And the detail coefficients are important 

to preserve the shape of the signal during 

reconstruction. The Donoho et.al algorithm is used 

for denoising by thresholding. Here the threshold 

value is determined by 

𝑇 = 𝜎 2 log(𝑁) 

N = number of wavelet coefficients. 

𝜎 = noise level estimation of 1st coefficient 

There are two approaches in thresholding 

Let d be the coefficient of noisy signal 

Hard            d =   
𝑑      𝑖𝑓  𝑑 > 𝑇 
0       else          

  

Soft           d =  
𝑠𝑖𝑔𝑛 𝑑  𝑑 − 𝑇       𝑖𝑓  𝑑 > 𝑇    

0                      else               
  

After thresholding the detail and approximation 

coefficients are reconstructed using IDWT. 

IV. SAVITZKY GOLAY FILTERING 

Savitzky golay filtering uses least square polynomial 

approximation for smoothening. Let there are 2M+1 

samples of a noisy signal x[n].Then the coefficients of 

a polynomial is 

p(n) =   𝑎𝑘𝑛
𝑘𝑁

𝑘=𝑜  

This requires mean square approximation error 

𝜀𝑁 =  (𝑝 𝑛 − 𝑥[𝑛]

𝑀

𝑛=−𝑀

)² 

 

Let a input signal vector has group of M samples at 

each side at the central point 

  x = [𝑥−𝑀 ,𝑥−𝑀+1,… , 𝑥−1,𝑥0, 𝑥1,…, 𝑥𝑀]ᵀ 

The smoothed output is obtained by combining the 

weighting coefficients or impulse response with the 

input samples and the interval 2M+1 i.e. discrete 

convolution with input samples. 

y(n) =   𝑕 𝑚  𝑥[𝑛 − 𝑚]𝑀
𝑚=−𝑀  

The vector of polynomial coefficients a can be 

computed as 

a = [𝑎0, 𝑎1 , 𝑎2 , … . , 𝑎𝑁]ᵀ     a=(AᵀA)
 -1

  AᵀX=Hx 

where A={𝑛𝑖},   i=0,1,..N 

H=finite impulse response equivalent to least square 

polynomial approximation. 

To calculate H,  

Set x to unit value centered in the interval  -M≤

𝑛 ≤M 

 x = d = *0,…., 0,1,0,…0+ᵀ 

Thus we obtain the approximate polynomial 

coefficient vector  

𝑎 = (𝐴ᵀ𝐴)¯¹Aᵀd
 

Where  

d = *0, 0,…, 0,1,0,…0,0+ ᵀis a (2M+1)× 1 column vector 

Aᵀ is a (N+1) × (2M+1) matrix. 

Now the 0𝑡𝑕  row of the matrix  𝐻 =  𝐴ᵀ𝐴 ¯¹Aᵀ 
 is 

[𝑕0,−𝑀 , 𝑕0,−𝑀+1, … , 𝑕0,0 , … , 𝑕0,𝑀−1𝑕0,𝑀] 

Which is equal to 

[𝑝 (-M), 𝑝 (-M+1),…, 𝑝 (0),…, 𝑝 (M)] 

Where 𝑝 (n) is the polynomial that approximates d 

with least square error. 

 𝑝 (n) =  𝑎 𝑘𝑛
𝑘𝑁

𝑘=0   -M≤ 𝑛 ≤M. 

Thus the impulse response of SG filter is  

h[-n] = 𝑝 (n). 

V. EMPIRICAL MODE DECOMPOSITION (EMD) 

EMD was introduced by huang et al for 

decomposing the given signal into a finite number of 

sub components. Using this any complicated data set 

can be decomposed into a finite and often small 

numbers of components. It is adaptive and even the 

basic functions are fully derived from the given data. 

The computation of EMD does not require any 

previously known value of the signal. It identifies the 

intrinsic oscillatory modes by their characters in time 

scale and according to it decomposes the signal into 

intrinsic mode functions (IMFs). 

The functions are considered as IMFs they should 

satisfy two conditions: 

1.) In the whole data set, the number of extrema and 

the number of zero-crossings must either be equal or 

differ by one. 

2.) At any point, the mean value of the envelope 

defined by the local maxima and the local minima is 

zero. 
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The way of decomposing the input data signal into 

IMFs is known as “sifting” process. 

The algorithm of shifting process is: 

1. Calculate all the local maximas and minimas of the 

signal x(n). 

2. Find the mean (𝑚1) of maxima and minima of the 

data x(n) 

𝑚1 = 
𝑥𝑚𝑎𝑥  𝑛 +𝑥𝑚𝑖𝑛 (𝑛)

2
 

3. Subtract the mean from the data to get the first 

component 𝑕1(n) 

𝑕1 𝑛 = 𝑥 𝑛 − 𝑚1 

4. If 𝑕1(n) satisfies the conditions of IMF then 

𝑕1(n) = 𝑐1(n) i.e. it is taken as the first IMF. 

5. If 𝑕1(n) dissatisfies the conditions then I is 

considered as data for the next sifting process. And 

step 1 to 4 are repeated on  𝑕1(n)  

𝑕2(n) = 𝑕1(n) - 𝑚2 

Here 𝑚2 is mean of 𝑕1(n). 

Then 𝑕2(n) = 𝑐1(n) 

6. If 𝑕2(n) dissatisfies the conditions then standard 

difference (SD) is calculated from the consecutive 

components.         

 SD =
 |hi−1 n − hi n |2N

n=0

hi−1
2  

7. If SD is in the range of 0.2-0.3 then sifting process 

is terminated and then 𝑕1(n) is considered as 𝑐1(n) 

8. When 𝑐1(n) is obtained then it is subtracted from 

x(n) to get the residue  𝑟1(n) 

𝑟1(n)  = x(n) - 𝑐1(n) 

9. Now 𝑟1(n) is the new signal data for sifting process 

and from step1 to 8 are done on 𝑟1(n) to get 𝑟2(n) 

𝑟2(n)  = 𝑟1(n) - 𝑐2(n) 

 

Therefore the residue signal obtained is 

𝑟𝑗 (n)  = 𝑟𝑗−1(n) - 𝑐𝑗 (n)  

 If 𝑟𝑗 (n) becomes a constant function then the sifting 

process is terminated. 

Then, 

Original signal x(n) is expressed as  

x(n) =  𝑐𝑖 𝑛 + 𝑟𝐿 𝑛 
𝐿−1
𝑖=1  

Resulting residue or final residue is 𝑟𝐿(𝑛) 

Now the IMFs can be signal and noise or pure 

signal. So, let 𝑐 𝑖(𝑛) is a noiseless IMF ,  𝑐𝑖 𝑛  is noisy 

IMF 

and 𝑛𝑖 𝑛  is noise. 

Then  

𝑐𝑖 𝑛  = 𝑐 𝑖(𝑛) + 𝑛𝑖 𝑛  

𝑐 𝑖(𝑛) =  (𝑐𝑖(𝑛 ), 𝑇) 

┌ is the estimation function i.e. parameter T is 

applied on 𝑐𝑖 𝑛  

𝑇 = 𝜎 2 log(𝑁) 

N = number of wavelet coefficients. 

𝜎 = noise level estimation of 1st IMF. 

Now thresholding is done by either hard or soft 

Hard    𝑐 𝑖(𝑛)    =   
 𝑐𝑖 𝑛     𝑖𝑓  𝑐𝑖 𝑛  > 𝑇 

0       else          
  

Soft       

𝑐 𝑖 𝑛 =  
𝑠𝑖𝑔𝑛 𝑐𝑖 𝑛   |𝑐𝑖 𝑛 | − 𝑇       𝑖𝑓  𝑐𝑖 𝑛  > 𝑇    

0                      else               
  

Now the denoised signal is 

𝑥 (n) = 𝑐 𝑖 𝑛 
𝐿−1
𝑖=1 + 𝑟𝐿 𝑛 . 

VI. PROPOSED METHOD 

In the proposed method we combine the concepts 

of the discrete wavelet transforms and the RLS 

adaptive noise cancellation. In this the signal is first 

denoised using discrete wavelet transform. Then the 

output or the denoised signal from the DWT is 

applied to the RLS adaptive noise cancellation 

algorithm. Here in DWT we used the ‘db4’ wavelet 

and for thresholding soft thresholding is used. 

Because the ‘db4’ and soft thresholding is the best 

pair for denoising a non stationary signal. The signal 

is first decomposed and then wavelet transform is 

applied and then thresholding was applied and then 

it was reconstructed by inverse wavelet transform. 

wavelet transform 

 

 

 

 

Inverse transform 

 

 

Now it was applied to the RLS algorithm 

 

k(n) =    

  

π(n) = P(n-1)u(n)  

ξ(n) = d(n) – ŵ
H
(n-1)u(n) 

ŵ(n) = ŵ(n-1) + k(n)ξ*(n) 

P(n) = λ
-1

 P(n-1) – λ
-1

 k(n) u
H
(n) P(n-1) 

VII. RESULT AND SIMULATION 
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The performances of the methods are determined 

by comparing the denoised signal with the original 

signal. The performances are found by the signal to 

noise ratio (SNR), percentage root mean square 

difference (PRD), noise power. 

𝑃𝑅𝐷 = 100 ∗  
 (𝑥 𝑛 − 𝑥 (𝑛))2𝑁

𝑛=1

 𝑥2 𝑛 𝑁
𝑛=1

 

𝑆𝑁𝑅 = 10 log10

  𝑦 𝑛 − 𝑥(𝑛) 2𝑁
𝑛=1

  𝑥  𝑛 − 𝑥(𝑛) 2𝑁
𝑛=1

 

𝑁𝑜𝑖𝑠𝑒 𝑝𝑜𝑤𝑒𝑟 = 𝑥2 𝑛 − 𝑥 2(𝑛) 

Here x[n] is the original ECG signal, y[n] is the noisy 

signal, 𝑥 [n] is the denoised ECG signal and N is 

number of ECG samples in the signal. 

If the value of SNR is high then the noise in the signal 

is low. If the PRD and noise power values are high 

then the noise is more in the signal. 

 
Fig.5 Denoised ECG signal from different methods. 

 
Fig.6 Comparison of SNR of different denoising 

methods. 

 
Fig.7 Comparison of PRD of different denoising 

methods 

Here the Fig.5 shows the denoised ECGs obtained by 

different methods used and mentioned above. Fig. 6 

shows the result of SNR comparison of the denoised 

signals. Fig.7 shows the PRD comparison. Fig.8 shows 

the noise power comparison. 

 
Fig.8 Comparison of Noise power of different 

denoising methods. 

VIII. CONCLUSION 

In this paper there are different method presented 

and applied on the ECG signal. The comparisons show 

that the proposed method has high SNR and less PRD 

and noise power. So, the proposed method reduces 

the noise efficiently when compared to others. As the 

wavelets perform well on non stationary ECG signal 

and then it is applied to RLS algorithm which 

converges faster and adjusts the filter parameters to 

environment to improve SNR and to reduce the mean 

between the original and denoised. 
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