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I. INTRODUCTION 

 Constraint satisfaction problems (CSPs) are 

mathematical problems defined as a set of objects 

whose state must satisfy a number of constraints or 

limitations. CSPs represent the entities in a problem 

as a homogeneous collection of finite constraints 

over variables, which is solved by constraint 

satisfaction methods.Examples of simple problems 

that can be modeled as a constraint satisfaction 

problem are like Eight queens puzzle , Map coloring 

problem ,Sudoku etc. Timetable creation comes in 

automated planning[1] section which are considered 

as real life examples . 

II. Related Work 

 Constraint satisfaction problems on finite 

domains are typically solved using a form of search. 

The most used techniques are variants of 

backtracking, constraint propagation, and local 

search[2]. 

 Backtracking is a recursive algorithm. It 

maintains a partial assignment of the variables. 

Initially, all variables are unassigned. At each step, a 

variable is chosen, and all possible values are 

assigned to it in turn. For each value, the consistency 

of the partial assignment with the constraints is 

checked; in case of consistency, a recursive call is 

performed. When all values have been tried, the 

algorithm backtracks. In this basic backtracking 

algorithm, consistency is defined as the satisfaction 

of all constraints whose variables are all assigned. 

Several variants of backtracking exists. Backmarking 

improves the efficiency of checking consistency. 

Backjumping allows saving part of the search by 

backtracking "more than one variable" in some cases. 

Constraint learning infers and saves new constraints 

that can be later used to avoid part of the search. 

Look-ahead is also often used in backtracking to 

attempt to foresee the effects of choosing a variable 

or a value, thus sometimes determining in advance 

when a subproblem is satisfiable or unsatisfiable. 

 Constraint propagation techniques are 

methods used to modify a constraint satisfaction 

problem. More precisely, they are methods that 

enforce a form of local consistency, which are 
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conditions related to the consistency of a group of 

variables and/or constraints. Constraint propagation 

has various uses. First, it turns a problem into one 

that is equivalent but is usually simpler to solve. 

Second, it may prove satisfiability or unsatisfiability 

of problems. This is not guaranteed to happen in 

general; however, it always happens for some forms 

of constraint propagation and/or for some certain 

kinds of problems. The most known and used form of 

local consistency are arc consistency, hyper-arc 

consistency, and path consistency. The most popular 

constraint propagation method is the AC-3 algorithm, 

which enforces arc consistency. 

 Local search methods are incomplete 

satisfiability algorithms. They may find a solution of a 

problem, but they may fail even if the problem is 

satisfiable. They work by iteratively improving a 

complete assignment over the variables. At each 

step, a small number of variables are changed value, 

with the overall aim of increasing the number of 

constraints satisfied by this assignment. The min-

conflicts algorithm is a local search algorithm specific 

for CSPs and based in that principle. In practice, local 

search appears to work well when these changes are 

also affected by random choices. Integration of 

search with local search have been developed, 

leading to hybrid algorithms. 

Decision problems 

 CSPs are also studied in computational 

complexity theory and finite model theory. An 

important question is whether for each set of 

relations, the set of all CSPs that can be represented 

using only relations chosen from that set is either in P 

or NP-complete. If such a dichotomy theorem is true, 

then CSPs provide one of the largest known subsets 

of NP which avoids NP-intermediate problems, 

whose existence was demonstrated by Ladner's 

theorem under the assumption that P ≠ NP. 

Schaefer's dichotomy theorem handles the case 

when all the available relations are boolean 

operators, that is, for domain size 2. Schaefer's 

dichotomy theorem was recently generalized to a 

larger class of relations[3]. 

Most classes of CSPs that are known to be tractable 

are those where the hypergraph of constraints has 

bounded treewidth (and there are no restrictions on 

the set of constraint relations), or where the 

constraints have arbitrary form but there exist 

essentially non-unary polymorphisms[clarification 

needed] of the set of constraint relations. 

Every CSP can also be considered as a conjunctive 

query containment problem[4]. 

Function problems 

 A similar situation exists between the 

functional classes FP and #P. By a generalization of 

Ladner's theorem, there are also problems in neither 

FP nor #P-complete as long as FP ≠ #P. As in the 

decision case, a problem in the #CSP is defined by a 

set of relations. Each problem takes as input a 

Boolean formula as input and the task is to compute 

the number of satisfying assignments. This can be 

further generalized by using larger domain sizes and 

attaching a weight to each satisfying assignment and 

computing the sum of these weights. It is known that 

any complex weighted #CSP problem is either in FP or 

#P-hard[5]. 

 There are currently many different solution 

generation algorithms in existence. Some are so well 

known that they are the subject of standard textbook 

material (see, eg. , Scharef, 1996; Osman and Kelly, 

1996). This section presents major algorithms that 

have appeared in the literature on generating 

timetabling solutions 

Tabu Search     

 A brief description of these fundamental 

techniques is now presented. Each of these 

descriptions are structured to begin with a general 

formulation of the technique followed by a 

mathematical interpretation of each technique 

within the context of the generalised timetable 

problem. 

Linear Programming/Integer Programming 

 The Linear and Integer Programming 

techniques, the first applied to timetabling, were 

developed from the broader area of mathematical 

programming. Mathematical programming is 

applicable to the class of problems characterised by a 
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large number of variables that intersect within 

boundaries imposed by a set of restraining conditions 

. The word "programming" means planning in this 

context and is related to the type of application . This 

scheme of programming was developed during 

World War II in connection with finding optimal 

strategies for conducting the war effort and used 

afterwards in the fields of industry, commerce and 

government services . 

Evolutionary and Genetic Algorithms  

 Evolutionary Algorithms (EAs) are a class of 

direct, probabilistic search and optimisation 

algorithms gleaned from the model of organic 

evolution. A Genetic Algorithm (GA) is a type of EA 

and is regarded as being the most widely known EA 

in recent times. 

Simulated Annealing  

 Simulated Annealing (SA) is a randomised 

local search optimisation technique for finding 

solutions to optimisation problems. The name is 

derived from the analogue to the chemical physics 

simulation of the cooling of a collection of a 

Boltzmann distribution of atoms. SA is highly 

resource intensive and one of its setbacks is its 

requirement of utilising a large amount of 

computational time for obtaining a near- optimal 

solution. As such some attempts at speeding up 

annealing algorithms have been based on shared 

memory multiprocessor systems, and parallelization 

for certain problems on distributed memory 

multiprocessor systems. 

Timetable construction problems at schools 

 In this thesis, we focus on timetable construction 

problems at schools. For these timetabling problems, 

the events are lessons in a subject, taught by a 

teacher to a group of students, sometimes referred 

to as a class, in a room. We show the concepts of 

timetabling in general (a) and timetable construction 

at schools in particular (b). In both cases there is a 

central concept to which all other concepts, most of 

them representing the necessary resources, are 

related. Decisions. Timetable construction problems 

are mainly about allocating resources, i.e., teachers, 

students, rooms, and time slots, to lessons.  

Table 1 Algorithm Comparison 

Algorithm Scalable? Optimal? 

Easy 

to 

use? 

Tweakable? 
Requires 

CH? 

Exhaustive Search 

(ES) 
     

Brute Force 0/5 5/5 5/5 0/5 No 

Branch And Bound 0/5 5/5 4/5 2/5 No 

Construction 

heuristics (CH) 
     

First Fit 5/5 1/5 5/5 1/5 No 

First Fit Decreasing 5/5 2/5 4/5 2/5 No 

Weakest Fit 5/5 2/5 4/5 2/5 No 

Weakest Fit 

Decreasing 
5/5 2/5 4/5 2/5 No 

Strongest Fit 5/5 2/5 4/5 2/5 No 

Strongest Fit 

Decreasing 
5/5 2/5 4/5 2/5 No 

Cheapest Insertion 3/5 2/5 5/5 2/5 No 

http://docs.jboss.org/optaplanner/release/6.2.0.Final/optaplanner-docs/html_single/index.html#bruteForce
http://docs.jboss.org/optaplanner/release/6.2.0.Final/optaplanner-docs/html_single/index.html#branchAndBound
http://docs.jboss.org/optaplanner/release/6.2.0.Final/optaplanner-docs/html_single/index.html#firstFit
http://docs.jboss.org/optaplanner/release/6.2.0.Final/optaplanner-docs/html_single/index.html#firstFitDecreasing
http://docs.jboss.org/optaplanner/release/6.2.0.Final/optaplanner-docs/html_single/index.html#weakestFit
http://docs.jboss.org/optaplanner/release/6.2.0.Final/optaplanner-docs/html_single/index.html#weakestFitDecreasing
http://docs.jboss.org/optaplanner/release/6.2.0.Final/optaplanner-docs/html_single/index.html#weakestFitDecreasing
http://docs.jboss.org/optaplanner/release/6.2.0.Final/optaplanner-docs/html_single/index.html#strongestFit
http://docs.jboss.org/optaplanner/release/6.2.0.Final/optaplanner-docs/html_single/index.html#strongestFitDecreasing
http://docs.jboss.org/optaplanner/release/6.2.0.Final/optaplanner-docs/html_single/index.html#strongestFitDecreasing
http://docs.jboss.org/optaplanner/release/6.2.0.Final/optaplanner-docs/html_single/index.html#cheapestInsertion
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Algorithm Scalable? Optimal? 

Easy 

to 

use? 

Tweakable? 
Requires 

CH? 

Regret Insertion 3/5 2/5 5/5 2/5 No 

Metaheuristic (MH)      

Local Search      

Hill Climbing 5/5 2/5 4/5 3/5 Yes 

Tabu Search 5/5 4/5 3/5 5/5 Yes 

Simulated Annealing 5/5 4/5 2/5 5/5 Yes 

Late Acceptance 5/5 4/5 3/5 5/5 Yes 

Step Counting Hill 

Climbing 
5/5 4/5 3/5 5/5 Yes 

Evolutionary 

Algorithms 
     

Evolutionary 

Strategies 
4/5 3/5 2/5 5/5 Yes 

Genetic Algorithms 4/5 3/5 2/5 5/5 Yes 

III. Conclusion 

This paper gives understanding the domain 

of constraint satisfaction problem and different ways 

to solve these problem . I have focused the methods 

which are used to solve timetable problems . These 

methods included algorithms which provide 

satisfiable solutions . I have provided the comparison 

between algorithm in terms of scalability , 

optimization , easy to use etc. 

Backtracking is used among algorithms 

because it provide a way to search the solution by 

moving back and from in solution space . It ease the 

process fo finding optimal solution. 

Heuristic Algorithm is used to generate the 

expected solutions . 

This paper gives a view of various methods 

to solve the constraint satisfaction problem . In 

future further detailed study on algorithm could be 

done revealing other important properties . 
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