

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Articles available online http://www.ijoer.in

Vol.3., Issue.6., 2015
(Nov.-Dec.,)

24 SAMEER DESWAL, SAVITA BISHNOI

I. INTRODUCTION

 Constraint satisfaction problems (CSPs) are

mathematical problems defined as a set of objects

whose state must satisfy a number of constraints or

limitations. CSPs represent the entities in a problem

as a homogeneous collection of finite constraints

over variables, which is solved by constraint

satisfaction methods.Examples of simple problems

that can be modeled as a constraint satisfaction

problem are like Eight queens puzzle , Map coloring

problem ,Sudoku etc. Timetable creation comes in

automated planning[1] section which are considered

as real life examples .

II. Related Work

 Constraint satisfaction problems on finite

domains are typically solved using a form of search.

The most used techniques are variants of

backtracking, constraint propagation, and local

search[2].

 Backtracking is a recursive algorithm. It

maintains a partial assignment of the variables.

Initially, all variables are unassigned. At each step, a

variable is chosen, and all possible values are

assigned to it in turn. For each value, the consistency

of the partial assignment with the constraints is

checked; in case of consistency, a recursive call is

performed. When all values have been tried, the

algorithm backtracks. In this basic backtracking

algorithm, consistency is defined as the satisfaction

of all constraints whose variables are all assigned.

Several variants of backtracking exists. Backmarking

improves the efficiency of checking consistency.

Backjumping allows saving part of the search by

backtracking "more than one variable" in some cases.

Constraint learning infers and saves new constraints

that can be later used to avoid part of the search.

Look-ahead is also often used in backtracking to

attempt to foresee the effects of choosing a variable

or a value, thus sometimes determining in advance

when a subproblem is satisfiable or unsatisfiable.

 Constraint propagation techniques are

methods used to modify a constraint satisfaction

problem. More precisely, they are methods that

enforce a form of local consistency, which are

REVIEW ARTICLE ISSN: 2321-7758

CONSTRAINT SATISFACTION PROBLEMS : SURVEY OF ALGORITHM

SAMEER DESWAL1, SAVITA BISHNOI2

1Computer Science & Engineering, Rohtak Institute of Technology & Management, Rohtak,

Haryana, India
2 Assistant Professor, CSE Department,Rohtak Institute of Technology & Management, Rohtak,

Haryana, India

ABSTRACT

Many problems in AI can be modeled as constraint satisfaction problems CSPs , Some

of them are related to real life problems like timetable planning , vehicle routing

problem etc. Hence there are various heuristics, meta-heuristics are present which

can be used to solve these problems . In this paper numerous algorithm have

discussed and their comparison is presented.

©KY Publications

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Articles available online http://www.ijoer.in

Vol.3., Issue.6., 2015
(Nov.-Dec.,)

25 SAMEER DESWAL, SAVITA BISHNOI

conditions related to the consistency of a group of

variables and/or constraints. Constraint propagation

has various uses. First, it turns a problem into one

that is equivalent but is usually simpler to solve.

Second, it may prove satisfiability or unsatisfiability

of problems. This is not guaranteed to happen in

general; however, it always happens for some forms

of constraint propagation and/or for some certain

kinds of problems. The most known and used form of

local consistency are arc consistency, hyper-arc

consistency, and path consistency. The most popular

constraint propagation method is the AC-3 algorithm,

which enforces arc consistency.

 Local search methods are incomplete

satisfiability algorithms. They may find a solution of a

problem, but they may fail even if the problem is

satisfiable. They work by iteratively improving a

complete assignment over the variables. At each

step, a small number of variables are changed value,

with the overall aim of increasing the number of

constraints satisfied by this assignment. The min-

conflicts algorithm is a local search algorithm specific

for CSPs and based in that principle. In practice, local

search appears to work well when these changes are

also affected by random choices. Integration of

search with local search have been developed,

leading to hybrid algorithms.

Decision problems

 CSPs are also studied in computational

complexity theory and finite model theory. An

important question is whether for each set of

relations, the set of all CSPs that can be represented

using only relations chosen from that set is either in P

or NP-complete. If such a dichotomy theorem is true,

then CSPs provide one of the largest known subsets

of NP which avoids NP-intermediate problems,

whose existence was demonstrated by Ladner's

theorem under the assumption that P ≠ NP.

Schaefer's dichotomy theorem handles the case

when all the available relations are boolean

operators, that is, for domain size 2. Schaefer's

dichotomy theorem was recently generalized to a

larger class of relations[3].

Most classes of CSPs that are known to be tractable

are those where the hypergraph of constraints has

bounded treewidth (and there are no restrictions on

the set of constraint relations), or where the

constraints have arbitrary form but there exist

essentially non-unary polymorphisms[clarification

needed] of the set of constraint relations.

Every CSP can also be considered as a conjunctive

query containment problem[4].

Function problems

 A similar situation exists between the

functional classes FP and #P. By a generalization of

Ladner's theorem, there are also problems in neither

FP nor #P-complete as long as FP ≠ #P. As in the

decision case, a problem in the #CSP is defined by a

set of relations. Each problem takes as input a

Boolean formula as input and the task is to compute

the number of satisfying assignments. This can be

further generalized by using larger domain sizes and

attaching a weight to each satisfying assignment and

computing the sum of these weights. It is known that

any complex weighted #CSP problem is either in FP or

#P-hard[5].

 There are currently many different solution

generation algorithms in existence. Some are so well

known that they are the subject of standard textbook

material (see, eg. , Scharef, 1996; Osman and Kelly,

1996). This section presents major algorithms that

have appeared in the literature on generating

timetabling solutions

Tabu Search

 A brief description of these fundamental

techniques is now presented. Each of these

descriptions are structured to begin with a general

formulation of the technique followed by a

mathematical interpretation of each technique

within the context of the generalised timetable

problem.

Linear Programming/Integer Programming

 The Linear and Integer Programming

techniques, the first applied to timetabling, were

developed from the broader area of mathematical

programming. Mathematical programming is

applicable to the class of problems characterised by a

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Articles available online http://www.ijoer.in

Vol.3., Issue.6., 2015
(Nov.-Dec.,)

26 SAMEER DESWAL, SAVITA BISHNOI

large number of variables that intersect within

boundaries imposed by a set of restraining conditions

. The word "programming" means planning in this

context and is related to the type of application . This

scheme of programming was developed during

World War II in connection with finding optimal

strategies for conducting the war effort and used

afterwards in the fields of industry, commerce and

government services .

Evolutionary and Genetic Algorithms

 Evolutionary Algorithms (EAs) are a class of

direct, probabilistic search and optimisation

algorithms gleaned from the model of organic

evolution. A Genetic Algorithm (GA) is a type of EA

and is regarded as being the most widely known EA

in recent times.

Simulated Annealing

 Simulated Annealing (SA) is a randomised

local search optimisation technique for finding

solutions to optimisation problems. The name is

derived from the analogue to the chemical physics

simulation of the cooling of a collection of a

Boltzmann distribution of atoms. SA is highly

resource intensive and one of its setbacks is its

requirement of utilising a large amount of

computational time for obtaining a near- optimal

solution. As such some attempts at speeding up

annealing algorithms have been based on shared

memory multiprocessor systems, and parallelization

for certain problems on distributed memory

multiprocessor systems.

Timetable construction problems at schools

 In this thesis, we focus on timetable construction

problems at schools. For these timetabling problems,

the events are lessons in a subject, taught by a

teacher to a group of students, sometimes referred

to as a class, in a room. We show the concepts of

timetabling in general (a) and timetable construction

at schools in particular (b). In both cases there is a

central concept to which all other concepts, most of

them representing the necessary resources, are

related. Decisions. Timetable construction problems

are mainly about allocating resources, i.e., teachers,

students, rooms, and time slots, to lessons.

Table 1 Algorithm Comparison

Algorithm Scalable? Optimal?

Easy

to

use?

Tweakable?
Requires

CH?

Exhaustive Search

(ES)

Brute Force 0/5 5/5 5/5 0/5 No

Branch And Bound 0/5 5/5 4/5 2/5 No

Construction

heuristics (CH)

First Fit 5/5 1/5 5/5 1/5 No

First Fit Decreasing 5/5 2/5 4/5 2/5 No

Weakest Fit 5/5 2/5 4/5 2/5 No

Weakest Fit

Decreasing
5/5 2/5 4/5 2/5 No

Strongest Fit 5/5 2/5 4/5 2/5 No

Strongest Fit

Decreasing
5/5 2/5 4/5 2/5 No

Cheapest Insertion 3/5 2/5 5/5 2/5 No

http://docs.jboss.org/optaplanner/release/6.2.0.Final/optaplanner-docs/html_single/index.html#bruteForce
http://docs.jboss.org/optaplanner/release/6.2.0.Final/optaplanner-docs/html_single/index.html#branchAndBound
http://docs.jboss.org/optaplanner/release/6.2.0.Final/optaplanner-docs/html_single/index.html#firstFit
http://docs.jboss.org/optaplanner/release/6.2.0.Final/optaplanner-docs/html_single/index.html#firstFitDecreasing
http://docs.jboss.org/optaplanner/release/6.2.0.Final/optaplanner-docs/html_single/index.html#weakestFit
http://docs.jboss.org/optaplanner/release/6.2.0.Final/optaplanner-docs/html_single/index.html#weakestFitDecreasing
http://docs.jboss.org/optaplanner/release/6.2.0.Final/optaplanner-docs/html_single/index.html#weakestFitDecreasing
http://docs.jboss.org/optaplanner/release/6.2.0.Final/optaplanner-docs/html_single/index.html#strongestFit
http://docs.jboss.org/optaplanner/release/6.2.0.Final/optaplanner-docs/html_single/index.html#strongestFitDecreasing
http://docs.jboss.org/optaplanner/release/6.2.0.Final/optaplanner-docs/html_single/index.html#strongestFitDecreasing
http://docs.jboss.org/optaplanner/release/6.2.0.Final/optaplanner-docs/html_single/index.html#cheapestInsertion

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Articles available online http://www.ijoer.in

Vol.3., Issue.6., 2015
(Nov.-Dec.,)

27 SAMEER DESWAL, SAVITA BISHNOI

Algorithm Scalable? Optimal?

Easy

to

use?

Tweakable?
Requires

CH?

Regret Insertion 3/5 2/5 5/5 2/5 No

Metaheuristic (MH)

Local Search

Hill Climbing 5/5 2/5 4/5 3/5 Yes

Tabu Search 5/5 4/5 3/5 5/5 Yes

Simulated Annealing 5/5 4/5 2/5 5/5 Yes

Late Acceptance 5/5 4/5 3/5 5/5 Yes

Step Counting Hill

Climbing
5/5 4/5 3/5 5/5 Yes

Evolutionary

Algorithms

Evolutionary

Strategies
4/5 3/5 2/5 5/5 Yes

Genetic Algorithms 4/5 3/5 2/5 5/5 Yes

III. Conclusion

This paper gives understanding the domain

of constraint satisfaction problem and different ways

to solve these problem . I have focused the methods

which are used to solve timetable problems . These

methods included algorithms which provide

satisfiable solutions . I have provided the comparison

between algorithm in terms of scalability ,

optimization , easy to use etc.

Backtracking is used among algorithms

because it provide a way to search the solution by

moving back and from in solution space . It ease the

process fo finding optimal solution.

Heuristic Algorithm is used to generate the

expected solutions .

This paper gives a view of various methods

to solve the constraint satisfaction problem . In

future further detailed study on algorithm could be

done revealing other important properties .

IV. References

[1]. Dynamic Flexible Constraint Satisfaction and

Its Application to AI Planning, Ian Miguel -

slides. Stuart Jonathan Russell, Peter Norvig

(2010). Artificial Intelligence: A Modern

Approach. Prentice Hall. p. Chapter 6. ISBN

9780136042594.

[2]. Bodirsky, Manuel; Pinsker, Michael (2011).

"Schaefer's theorem for graphs".

Proceedings of the 43rd Annual Symposium

on Theory of Computing (STOC '11).

Association for Computing Machinery. pp.

655–664.

[3]. Kolaitis, Phokion G.; Vardi, Moshe Y. (2000).

"Conjunctive-Query Containment and

Constraint Satisfaction". Journal of

http://docs.jboss.org/optaplanner/release/6.2.0.Final/optaplanner-docs/html_single/index.html#regretInsertion
http://docs.jboss.org/optaplanner/release/6.2.0.Final/optaplanner-docs/html_single/index.html#hillClimbing
http://docs.jboss.org/optaplanner/release/6.2.0.Final/optaplanner-docs/html_single/index.html#tabuSearch
http://docs.jboss.org/optaplanner/release/6.2.0.Final/optaplanner-docs/html_single/index.html#simulatedAnnealing
http://docs.jboss.org/optaplanner/release/6.2.0.Final/optaplanner-docs/html_single/index.html#lateAcceptance
http://docs.jboss.org/optaplanner/release/6.2.0.Final/optaplanner-docs/html_single/index.html#stepCountingHillClimbing
http://docs.jboss.org/optaplanner/release/6.2.0.Final/optaplanner-docs/html_single/index.html#stepCountingHillClimbing
http://docs.jboss.org/optaplanner/release/6.2.0.Final/optaplanner-docs/html_single/index.html#evolutionaryStrategies
http://docs.jboss.org/optaplanner/release/6.2.0.Final/optaplanner-docs/html_single/index.html#evolutionaryStrategies
http://docs.jboss.org/optaplanner/release/6.2.0.Final/optaplanner-docs/html_single/index.html#geneticAlgorithms

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Articles available online http://www.ijoer.in

Vol.3., Issue.6., 2015
(Nov.-Dec.,)

28 SAMEER DESWAL, SAVITA BISHNOI

Computer and System Sciences 61 (2): 302–

332. doi:10.1006/jcss.2000.1713.

[4]. Cai, Jin-Yi; Chen, Xi (2012). Complexity of

counting CSP with complex weights. pp.

909–920.

[5]. Miguel, Ian (July 2001). Dynamic Flexible

Constraint Satisfaction and its Application to

AI Planning (Ph.D. thesis). University of

Edinburgh School of Informatics.

hdl:1842/326;

[6]. Dechter, R. and Dechter, A., Belief

Maintenance in Dynamic Constraint

Networks In Proc. of AAAI-88, 37-42.

[7]. Solution reuse in dynamic constraint

satisfaction problems, Thomas Schiex

[8]. Duffy, K.R.; Leith, D.J. (August 2013),

"Decentralized Constraint Satisfaction"

