

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Articles available online http://www.ijoer.in

Vol.3., Issue.6., 2015
(Nov.-Dec.,)

618 MIRZA MOHD AILEEYA QASIM

–

INTRODUCTION

 Performance can be improved at various

levels of abstraction. Typically, optimization should

start from a higher level to a lower level. The highest

level being the design level in which the

optimizations are performed at a higher level of

granularity. Optimizations at this level cannot be

changed afterwards because they are the decision

making aspects in the beginning. The performance

improvements at higher levels are also not easy to

change once the decision is made but contribute

towards major performance improvements. As we

move on towards the lower levels, we have to refine

our results continuously. The latter optimizations

require more work but are less fruitful whereas the

former optimizations require less time but are more

fruitful. A good decision made in the beginning can

lead to an overall performance improvement once

the entire system is optimized at various levels. For

very big projects, performance engineering has to be

performed after every incremental development.

 A program with no performance

engineering is very slow and is not always fit for a

specific purpose. A PC game which is running on a

monitor with refresh rate of 72Hz and giving a frame

rate of 15 frames per second will obviously give a

very bad performance. The same computer with a

graphics card of 2GB and with 120 cores is not being

utilized by a program which is otherwise running on

a quad core CPU will not give good performance. So,

RESEARCH ARTICLE ISSN: 2321-7758

AN INTEGRATED APPROACH TOWARDS PERFORMANCE ENGINEERING OF

SOFTWARE SYSTEMS: A STUDY

MIRZA MOHD AILEEYA QASIM

Research Scholar, Department of Computer Science and Engineering, Dr. A. P. J. Abdul Kalam

Technical University, Lucknow, Uttar Pradesh, India.

ABSTRACT

Improving the quality of code in order to make it run efficiently on the hardware is

central to code optimization. Some code optimizers may prioritize memory

efficiency; some may prioritize time while others may prioritize power consumption.

Some might involve a combination of the above three. A general purpose software

system can never be fully optimized. This is because a small amount of performance

improvement might be left out during the optimization phases or the optimizer

might not fully utilize the resources provided. On the other hand, special purpose

software systems can be truly optimal. If one tries to reduce the code size, it is

possible that the execution time may increase. Vice versa could also happen. So, a

tradeoff should be maintained as to what parameter is being given priority. It is also

possible that if one uses a faster algorithm, it may drain more power of the system.

Thus, all the constraints must be taken into consideration before designing a

software system. As soon as an optimal solution for the code optimization problem is

found, the process of optimization can be stopped.

Key Words—Automatic Optimization, Manual Optimization, Performance

Engineering of Software. ©KY Publications

MIRZA MOHD

AILEEYA QASIM

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Articles available online http://www.ijoer.in

Vol.3., Issue.6., 2015
(Nov.-Dec.,)

619 MIRZA MOHD AILEEYA QASIM

a program should try to extract every drop of

available performance from the hardware. Initially

at the time of software development, performance

should not be taken into consideration. However,

once the software is developed, the second phase

should be performance engineering. If we take an

example of the Java virtual machine [6], its

performance was improved after about a decade.

LEVELS OF OPTIMIZATION

 From the highest level of abstraction to the

lowest level, the optimization techniques should be

applied in a top down manner. A study of how to

perform these optimizations is listed as follows:

Design Level

 At the design level, the design needs to

quantify all of the resources, targets and limitations

of the system and once analyzed, the designer has a

clear picture in what way he has to optimize. First of

all, the high level architecture of the system is

designed, and thoroughly analyzed whether it will

give a good performance or not. Suppose that the

performance of the system which is being developed

is overall restricted by the network. Here, the

network channel is the main cause of decrease in

performance. In such a scenario, the design decision

should be such that the developer should minimize

the network usage as much as possible. He needs to

design the application in such a way which uses less

network. As discussed earlier, it all depends on the

goal and priority of what is taken into performance

consideration. If we are designing a compiler which

should compile quickly, a single pass compiler is a

good option. On the other hand, if the performance

of generated code is our concern, then a slow

compiler is beneficial because it will try to optimize

the code in all possible ways. The programming

language in which we are implementing should also

be chosen wisely. It should provide good

performance.

Algorithms and Data Structures

 Once the high level design is ready, next we

choose the algorithms and data structures for our

problem. Utmost care should be taken that the data

structures we choose should be as efficient as

possible. A good and carefully chosen data structure

will give good performance as compared to an

otherwise unsuitable data structure. Once decided,

it will be very difficult to change it afterwards.

Abstract data types (ADT) can also be used if

changing in near future is required. This will ensure

flexibility.

 The selection of a good algorithm is also

necessary. Either it should work in O(1) time or

O(Log n) time or worse i.e. O(n) or O(n Log n) but

not more worse. Space and time complexities

should also be kept on track. The problems with

algorithms of complexity greater than O(n) usually

do not scale well. Some algorithms can also cause

problems when repeatedly called over and over

again.

 As soon as the we are done with the

asymptotic complexity, we need to check for

tradeoff between algorithms. It should be checked

whether some hybrid algorithms are available or not

so that it can improve performance of the code.

Code should also be sampled for smaller inputs to

check their performance.

 Predefined programming patterns must be

adopted in order to make the common case fast

instead of wasting much time on it. All unnecessary

load on the algorithm should be removed and

performance critical places are quantified. With the

help of this we get a system which is fast performing

in nature. The algorithm should efficiently use the

memory, cache and should not perform duplicate

calculations.

Source Code Level

 After the algorithms and data structures

are decided, there comes final implementation in

the programming language. The source code forms

the basis of all software development. There are

some constructs in programming languages that are

slower than others, some are faster than others. For

example in case of C programming language, while

(1) , … - is faster than for(;;) , … - when a loop

without condition is to be executed. The first one

will always be true whereas the other one requires

an unconditional branch. Many of such types of

optimizations can be performed by modern

optimizing compilers [1]. The overall performance

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Articles available online http://www.ijoer.in

Vol.3., Issue.6., 2015
(Nov.-Dec.,)

620 MIRZA MOHD AILEEYA QASIM

depends upon the programming language and the

target architecture. Compilers also utilize branch

predictions to predict the outcome of an execution.

Many optimization techniques remove the

temporary variables to improve performance.

Build Level

 At the time of building the software on a

specific hardware, special flags can be used to

further tune up the performance of the source code

on that specific hardware. Unneeded software

features can be easily removed with the help of

these flags. Many of the source base Linux

distributions such as Gentoo uses the Portage

package manager to optimize performance for a

specific architecture. Through this feature, advanced

branch prediction capabilities can be utilized which

are specific to that hardware.

Compile Level

 By using a high performance optimizing

compiler one can assure himself that the code will

be optimized to such an extent such as it will not be

optimized beyond the reach of the compiler.

Assembly Level

 Once the optimizing compiler has fully

optimized the source code, there are still some

room for improvement which the compiler just

cannot do. The task of the compiler is just to convert

the high level language program into assembly

language. The assembly program also contains many

useless execution and overheads. They all can be

removed properly without any loss of consistency to

give good performance. This is because the

instruction set architecture is specific to the

hardware. So, with the help of assembly language,

code can be tweaked to produce good performing

code. This technique is also known as hand

optimization or the ultimate optimization step.

Nowadays, compilers are becoming more and more

sophisticated and the processors are becoming

more complex, so this type of optimization becomes

very difficult and is not performed in all of the cases.

But the thing to be kept in mind is that it is the most

efficient code which can ever run on the hardware.

 Nowadays, the code written by software

developers is deemed to run on many different

processors. As a result of this, the developers do not

always optimize for a specific processor. This is

because assembler code needs to be optimized for a

specific hardware but it will still give worse

performance on other processors because the

instruction set architecture is different.

 So, rather than hand tuning the code, a

disassembler is used through which the code is

checked and necessary modifications are made in

the high level source code itself. The compiled code

will be efficient.

Runtime

Java introduced a runtime environment

known as HotSpot virtual machine. This featured a

nice just in time compiler. Such compilers are used

in many other domains as well. They are used in

adaptive optimizations in which a just in time

compiler is used to dynamically compile portions of

code to hardware.

In case of profile directed optimizations [2],

the optimizations are performed before the

execution of the code and then profiled suitably.

Based on the information received from the static

analysis, a somewhat better performance can be

achieved. Dynamic profile guided optimizations are

called adaptive optimizers.

New techniques of self-modifying code are

capable of changing itself at runtime depending

upon the circumstances. This type of optimizations

was popular in case of assembler programs.

There are some processors which perform

out-of-order execution, specular execution and

branch prediction on the source code. They possess

features such as instruction pipelines which modern

compilers can easily take advantage of and can

perform instruction scheduling.

Platform Dependent and Independent Optimizations

There are two main categories of code

optimization. One is platform dependent and the

other one being platform independent. The good

thing about platform independent optimizations is

that these optimizations can be used for any

platform. But this is not the case with platform

dependent. Platform independent techniques might

include loop unrolling, loop, reductions etc. whereas

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Articles available online http://www.ijoer.in

Vol.3., Issue.6., 2015
(Nov.-Dec.,)

621 MIRZA MOHD AILEEYA QASIM

platform dependent need to take advantage of the

features specific to a particular architecture and

different code is needed to be produced for

different architectures. Machine independent

optimizations reduce the number of instructions to

be executed by the processors whereas machine

dependent techniques use instruction scheduling,

data level parallelism, instruction level parallelism,

data locality optimizations etc. These techniques

might be different on different architectures.

FACTORS INVOLVED IN OPTIMIZATION

There are many factors involved in

optimizing a program. Some may be programming

language dependent, some hardware dependent

and some mathematical.

Strength Reduction

A computation can take place in more than

one way. Strength reduction is a way to increase the

efficiency while still maintaining the same

functionality. Consider an example to add numbers

from 1 to N:

int i, sum = 0;

for (i = 1; i <= N; ++i)

sum += i;

printf("sum: %d\n", sum);

Assume that there is no arithmetic

overflow, the same code can be written more

efficiently ad:

int sum = N * (1 + N) / 2;

printf("sum: %d\n", sum);

To make the task computationally efficient,

an optimizing compiler automatically does this type

of optimization. The compiler selects an algorithm

through which it is able to do this. This introduces a

significant degree of performance. It is not

guaranteed that applying optimization processes as

in the above case will actually increase performance.

The technique should be selected carefully so that

rather than increasing performance, it is in fact

slowing down the system if the value of N is very

small. It may be also possible that the hardware is

very fast in computing loops other than

multiplications.

Tradeoffs

Specialized algorithms can also be used

which utilize tricks and tweaks and using more

comprehensive algorithms and doing tradeoffs. A

program which is optimized fully is very difficult to

understand because it may contain more faults than

the previous version. And also as previously

discussed optimization of code results in decreased

maintenance capability.

There are many parameters on which

performance can be improved. It can be either

power, time, bandwidth, memory or any other

resource. There are chances that increase in

performance of one factor decreases the other, so a

tradeoff has to be maintained. For example,

memory consumption is increased by increasing the

size of the cache but also improves the performance

of the runtime system.

Some instances are there in which the

programmer must decide to make software better

while performing optimizations by making other

parameters less efficient. Suppose that a new

benchmark is released and the programmers start

testing the performance of their software on the

benchmarks. Just only to make their software

better, they make benchmark specific optimizations

which are of course fake but they beat the

benchmark.

Bottlenecks

A bottleneck is a region which is a cause of

degradation in performance. An optimization

technique may also find bottlenecks in the system.

This can also be termed an optimization technique.

In the language of code, it is called as a hotspot or a

primary consumer. In case of network, a bottleneck

may be a type of latency in the network bandwidth.

As per Pareto distribution principle, 80% of

the resources are used by around 20% of the

operations. If we try to get a better approximation

of the case, it will be found that 90% of the

execution time is being spent on only 10% of the

code. It may be also possible that an algorithm with

less instructions to execute and too much overhead

is induced on that program. The time taken to input

data, setup time and complex scheduling algorithm

can outweigh the benefit of good algorithm. This is

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Articles available online http://www.ijoer.in

Vol.3., Issue.6., 2015
(Nov.-Dec.,)

622 MIRZA MOHD AILEEYA QASIM

the reason why adaptive and hybrid algorithms are

used instead of these slow performing ones.

It has also been seen that just adding more

amount of RAM has actually speeded up execution.

For instance, if a disk is used which performs poorly,

and our algorithm is reading text from the hard disk

continuously, then in that case even we are using a

better algorithm, the performance is not going to

get any better. However, if we increase the memory

size and read a file at once from the memory, it will

consume less time. Cache performance can also be

significantly increased just by adding enough

memory.

When to optimize

As already mentioned, optimizing the code

reduces its readability and it can also include code

which can increase performance. Because of this

significant change in the code, the program

becomes even harder to debug. Thus, the

performance tuning and optimizations should be

applied at the end of the development process.

Donald Knuth says, "We should forget

about small efficiencies, say about 97% of the time:

premature optimization is the root of all evil. Yet we

should not pass up our opportunities in that critical

3%" [3].

This quote is also attributed to Tony Hoare

but he claims that he has not said this.

Donald Knuth also says that, "In established

engineering disciplines a 12% improvement, easily

obtained, is never considered marginal and I believe

the same viewpoint should prevail in software

engineering" [3].

Performance improvement should have no

place in the design of the code. The resultant design

produced seems unclean and may also produce

suboptimal results in some cases. The process of

including performance improvement at the time of

design is termed as premature optimization. The

code can become complicated and less intelligible if

the programmer introduces optimization at lower

level.

Amdahl’s Law *5+ should always be referred

when optimizing a specific part of the application

because as per the law, the overall performance

depends upon a specific sequential fraction of the

code. Performance can only be improved if and only

if the sequential fraction is optimized well.

Performance will never reach above the sequential

fraction. This theoretical law helps in getting

performance considerations without executing on

hardware.

A good approach will be to first compile the

code, then profile or benchmark the code, and

based on the results of the profile, optimize the

code again. At this stage optimization is quite easy.

Profiling may expose potential capabilities of the

code and also may reveal possible bugs which may

be removed in order to get performance in the final

execution rather than premature optimization.

Performance goals should be kept in mind at all

times while developing software but in the initial

stages, the programmer should not prioritize

performance rather than design.

Macros

While the code is being developed

programmers use macros in different forms.

Programming languages such as C/C++ use macros.

Macros are particularly developed using mainly

token substitution or parse time substitution. Type

safety can also be ensured by using inline functions.

Inline functions can be further optimized at compile

time and inserted in the code. Many programming

languages which are functional in nature macros are

safer to use with macros because computations are

performed at parse time and not link time.

In many functional programming languages

macros are implemented using parse-time

substitution of parse trees/abstract syntax trees,

which it is claimed makes them safer to use. Since in

many cases interpretation is used, that is one way to

ensure that such computations are only performed

at parse-time, and sometimes the only way.

The Lisp language first started providing

macros. Therefore, macros are also called lisp like

macros. Using template metaprogramming in C++,

same effect can be achieved.

Current trends have moved all the work to

compile time. There is a difference between C

macros, lisp like macros and C++ metaprogramming

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Articles available online http://www.ijoer.in

Vol.3., Issue.6., 2015
(Nov.-Dec.,)

623 MIRZA MOHD AILEEYA QASIM

templates. The difference is that C++ macros can

perform complex calculations whereas lisp like

macros can only be used for substitution. Also,

iteration and recursion are not supported by C

macros there they aren’t Turing complete. In

conclusion, it is very difficult to predict the impact

on tools on software systems.

Automated and Manual Optimizations

Optimizations can be either manual or

automatic. If a person performs it by hand, it

becomes manual optimization. If it is being

optimized by a compiler, then it is termed as

automatic optimization. Profits in optimizations are

a little less in local optimizations and much more in

global optimizations. Expert algorithmic methods

are devised in order to find superior algorithms.

The optimizations which a compiler cannot

perform are performed manually by programmers.

This include the entire software system which is

taken into consideration. The code may be changed

manually here or there, code size may be increased

or otherwise made to use more memory in order to

increase performance. The cost of manual

optimization is much higher than automatic

optimization by compilers.

In order to find out the bottlenecks, a

profiler or a performance analyzer might be used.

These profilers give useful information regarding the

amount of resources being consumed. If an

unimportant piece of code is optimized, it might

even lead to no performance improvement. People

claim that they have a clear idea about the

performance of the system but in fact they are not

always accurate.

As soon as the bottlenecks are removed,

then the algorithm is designed so that bottlenecks

no longer remain. Usually, the algorithms are

redesigned keeping in mind the bottlenecks while

also, not deviating from the application objective

and also giving good performance. The algorithm

can be transformed from a generic one to a specific

one. If a quick sort algorithm is being used and it is

known that the elements of the array are already

arranged in a specific pattern, then a custom made

algorithm can be used which can exploit the

features effectively.

Once the programmer is absolutely certain

that he has used the most efficient algorithm, from

there onwards, he can start to optimize the code. He

can apply loop unrolling, data locality optimization,

clever selection of data types and also can transform

the way in which the computations are taking place.

Normally, a compiler automatically does all things

for the programmer, but still there are some

optimizations that cannot be performed by the

compiler and needs manual attention.

It is also possible that due to programming

language limitations, some optimizations just cannot

be performed. There are some performance critical

portions of code that need to be written in assembly

language. An example of such a programming

language is C in which many of the low-level

routines can be written in assembly language so that

the code gives good performance. Adding inline

assembler routines also allows direct access to the

hardware and thus increased efficiency.

An expert programmer would argue about

rewriting portions of code for performance.

However, many studies have suggested that

rewriting the code pays off and it should be

considered as a rule of thumb or more

appropriately, the 90/10 law which states that 90%

of the time is spend optimizing 10% of the code [4].

So, in a nut shell, applying 90% of the effort in 10%

of the code may result in huge performance

improvements if the correct bottlenecks are found.

Manual optimization can also affect the

readability of code because clever optimization

techniques can make the code tricky to understand.

Thus, whenever the code is being optimized, each

and everything should be thoroughly documented

using comments so that future developments can be

easy to accomplish.

A special program named “optimizer” can

also be used for code optimization. These optimizer

modules are in-built inside compilers which apply

various optimization techniques on the code. These

optimizers can either be machine dependent or

independent.

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Articles available online http://www.ijoer.in

Vol.3., Issue.6., 2015
(Nov.-Dec.,)

624 MIRZA MOHD AILEEYA QASIM

Nowadays, only compilers allow automated

optimizations. Because compiler optimizations

cannot go beyond a certain extent, some special

optimizers are used which take in a programming

language description and generate a custom built

optimization step. These optimizers are better

known as code transformers rather than optimizers.

These transformers are most suitable in languages

like C/C++.

Many programming languages use an

intermediate representation to optimize the code in

a machine independent manner. Distributed

computing, grid computing and cloud computing

systems allow optimizations of the entire system by

moving tasks from one node to the another at idle

time.

Time Taken for Optimization

It is also possible that the time taken for

optimization is quite large and becoming an issue in

itself.

There is a high probability that the code

generated after optimization might become worse

or some new bugs might have crept in there. In this

case, a code which was running perfectly fine

previously might stop working. Other drawback is

that optimized code is not easier to maintain

because it is less intelligible and difficult to read. So,

every step should be taken wisely whether

optimization is required or not because often there

is a tradeoff.

An optimizer should itself be optimized

suitable and care should be taken that it does not

take much time in optimizing other programs.

Therefore, the compilation time should be

compensated by optimization time if the source

code is quite large. Particularly for just in time

compilers, the performance of the runtime

combined with execution of target code can give

good performance.

Conclusion

In this study, a specific top-down approach

was adopted to improve performance of software at

various levels of abstraction. The techniques specific

to compilers were not included because that

requires another article to explain. Only those

techniques which can be done manually outside the

compilation process were discussed. It is widely

accepted that applying these approaches right from

the design phase can lead to significant

improvements in performance.

References

[1]. Ken Kennedy and John R. Allen, Optimizing

compilers for modern architectures: a

dependence-based approach, Morgan

Kaufmann Publishers Inc. San Francisco, CA,

USA 2002.

[2]. Dehao Chen, "Taming hardware event

samples for fdo compilation", Proceedings

of the 8th annual IEEE/ACM international

symposium on Code generation and

optimization, 2010.

[3]. Donald Knuth, "Structured Programming

with go to Statements". ACM Journal

Computing Surveys 6 (4): 268 (December

1974).

[4]. Bob Wescott, "Every Computer

Performance Book", April 2013.

[5]. Gene M. Amdahl, “Validity of the single

processor approach to achieving large scale

computing capabilities”, AFIPS spring joint

computer conference, 1967.

[6]. Bill Venners, Inside the Java Virtual

Machine, McGraw-Hill, Inc. New York, NY,

USA 1996.

