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INTRODUCTION 

Evaporative cooling had its birth around 

one thousand years ago in ancient Egypt. At that 

time, porous pots and ponds covered with a wet 

cloth were often used to preserve food against hot 

weather and some water chutes were also 

integrated into walls to keep the inside space cool, 

due to the evaporation of water when air flowed 

through. This technique was soon spread into other 

hot and arid places of the world.  

The principle underlying Evaporative Air 

Conditioning (EAC) is the conversion of sensible heat 

of hot air to latent heat of water. Part of the sensible 

heat of the air is transferred to the water and 

becomes latent heat and evaporates the water. The 

wetted medium for the evaporation of water could 

be a porous wetted pad consisting of fibres, 

cellulose papers or a spray of water. 

Two common types of evaporative cooling 

systems are the direct and indirect evaporative 

systems. In the direct evaporative cooler (DEC), the 

air comes into direct contact with water. The direct 

evaporative cooling system adds moisture to the 

cool air, while an indirect evaporative cooling 

system (IEC) provides only sensible cooling to the 

processed air without any addition of moisture. 

Depending on the climatic conditions and the 

application, combining indirect and direct 

evaporative coolers might be appropriate. If a first 

indirect stage is added to a second direct stage, a 

two-stage indirect/direct cooler is obtained which 

cools the air more than a stand-alone DEC unit.  

Besides reducing the temperature EAC 

supply fresh air, use water as the working fluid 

instead of CFCs, simple manufacturing, easy 

maintenance, low power consumption, ability of 

achieve suitable level of humidity in rather dry 
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regions. EAC technologies represent significant 

environmental benefits related to reducing 

CFC/HCFC use and for obviating CO2 and other 

emissions, as well as for reducing peak electrical 

demand.  

The minimum temperature that can be 

obtained is the wet bulb temperature of the 

entering air [1]. 

For the better understanding of EAC, exergy 

analysis method can be applied with energy analysis. 

Exergy analysis uses both conservation of mass and 

energy principles. This method is based on second 

law of thermodynamics for analysis, design and 

improvement of energy systems. Exergy is always 

evaluated with respect to a reference environment 

and it can be destroyed when the irreversibility 

process occurs. If an exergy analysis performed on a 

system, thermodynamic imperfections can be 

quantified as exergy destruction, which represent 

losses in energy quality or usefulness (Dincer and 

Rosen, 2007). The term exergy was introduced by 

Rant in 1953. 

LITERATURE REVIEW 

In the field of direct evaporative cooling 

several authors dedicated their researches. Watt [1] 

developed the first serious analyses of direct and 

indirect evaporative systems,  

Halasz [2] presented a general 

dimensionless mathematical model to describe all 

evaporative cooling devices namely cooling water 

towers, evaporative condensers of fluid, air washes, 

dehumidification coils, etc. Camargo et al. [3] 

presented the principles of operation for direct and 

indirect evaporative cooling systems and the 

mathematical development of thermal exchanges 

equations, Koca et al. [4] have developed a 

procedure for testing evaporative cooling pads. 

Their results show that pad performance is affected 

by pad angle, pad thickness, face air velocity, and 

static pressure drop across the pad and can be 

expressed in terms of evaporative   cooling 

efficiency and static pressure drop. Dai et al. [5] 

solved governing equations for cross-flow direct 

evaporative cooler using an integration method. 

They used honeycomb paper as packing material 

and assumed constant space between channels and 

they simply modelled the thin water film on 

surfaces. Their results showed that the performance 

improve by optimizing length of the air channel of 

honeycomb paper, mass flow rates of air and feed 

water. Kruger [6] emphasized that the use of direct 

evaporative cooling system in humid places such as 

Maracaibo is not effective. In this way, indirect 

evaporative cooling system came to birth, gained its 

popularity and developed for more than a 

century.Liao et al. [7] developed a wind tunnel 

technique for measuring performance of the 

evaporative cooling pads. Liao et al. [8] investigated 

the effects of air velocity and pad thickness on the 

efficiency and pressure drop of evaporative cooling 

pads. Al-Sulaiman [9] experimentally evaluated the 

performance of three natural fibres (palm fibre, jute 

and luffa) as wetted pads in evaporating cooling. 

Gunhan et al. [10] experimentally evaluated the 

suitability of greenhouse shading net, pumice stones 

and volcanic tuff as pad materials for use in 

evaporative coolers. Khond [11] investigated the 

performance of evaporative cooler using four 

different pad materials i.e. stainless steel wire mesh, 

coconut coir, khus and wood wool. Dzivama et al. 

[12] they used ground sponge, stem sponge, jute 

fibre and charcoal as pads for an evaporative cooler 

Kulkarni et al [13] analyzed the 

performance of jute fibre ropes as alternative 

cooling media as ropes are capable of retaining high 

moisture and have a large wetted surface area. Hot 

and dry air is allowed to flow over the wet jute rope 

bank tightly held between two plates which are 

integral part of two tanks. 

Kulkarni et al [14] theoretically analyzed 

the performance of evaporative cooler pads of rigid 

cellulose, corrugated paper, high density polythene 

packing and aspen fibre having rectangular, 

cylindrical and hexagonal shape. 

In the field of exergy analysis, Dincer [15] 

reported the linkages between energy and exergy, 

exergy and the environment, energy and sustainable 

development, and energy policy making and exergy 

in detail. Chengqin et al. [16] analyze exergy changes 

in the HVAC systems. They presume an unusual 

dead state to eliminate the exergy calculation of 

water. Also, they break down the exergy of moist air 
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to three components: thermal, mechanical, and 

chemical components. By assuming efficiency for 

each scheme of evaporative cooling, the results 

have shown that the regenerative scheme has the 

best performance. Alhamzy [17] calculates the 

minimum work of dehumidification in an air-

conditioning process based on the second law of 

thermodynamics. In his research, the state of 

environment was chosen as the dead state.  

Qureshi et al. [18] carried out study of 

various psychrometric processes on the basis of 

second law of thermodynamics. The relation 

between work and changes in entropy generation 

arises from the simultaneous treatment of the first 

and second laws referred to as exergy analysis. The 

study of each of the processes is carried out to 

determine the variation of second-law efficiency as 

a function of mass flow rate, relative humidity and 

temperature. Other trends such as variation of 

temperature with relative humidity are also shown 

where applicable. Irreversible losses are calculated 

by applying an exergy balance on each system. 

Kanoglua et al.[19] had studied the effect of 

ambient conditions on the first and second law 

performance of an open desiccant cooling process. 

The cooling system consists of a desiccant wheel, a 

rotary regenerator, two evaporative coolers, and a 

heating unit. Certain ideal operating characteristics 

based primarily on the first law of thermodynamics 

are assumed for each component. Qureshi et al. [20] 

carried out second-law-based parametric study of 

performance evaluation of cooling towers and 

evaporative heat exchangers, to determine the 

variation of second-law efficiency as well as exergy 

destruction as a function of various input 

parameters. Irreversible losses are determined on 

each of the systems investigated. They noticed that 

an increase in the inlet wet bulb temperature 

invariably increases the second-law efficiency of all 

the heat exchangers. Taufiq et al. [21] study the 

exergy analysis of the direct evaporative cooling in a 

Malaysian building. The average temperature and 

relative humidity were considered as the dead state. 

The results obtained have shown that increase in 

relative humidity increases exergy efficiency. 

Muangnoi et al. [22] use an exergy analysis to 

demonstrate exergy and exergy destruction of water 

and air flowing through the cooling tower. They 

show thermodynamics irreversibility is higher at 

bottom of a cooling tower. Kanoglu et al. [23] 

carried out studied on psychrometric processes on 

the basis of second law of thermodynamics. Mass, 

energy, entropy, and exergy balances and exergy 

efficiency relations are developed for common air-

conditioning processes. The effects of air 

temperature and relative humidity at the inlet and 

exit, the temperature of steam used for 

humidification, and the dead state properties of 

exergy efficiency and exergy destruction are 

investigated. The results indicate that processes 

with low exergy efficiency and high exergy 

destruction have significant potential for improving 

performance. Chen et al. [24] analyzed and 

optimized several practical evaporative cooling 

systems based on the newly introduced moisture 

entransy theory. They realized that the most 

efficient evaporative cooling performance requires a 

minimum thermal resistance. Aforementioned 

research papers on exergy analysis have not 

examined exergetic efficiency on various climates. 

Indeed, multi-climate countries such as Iran 

necessitate an abroad consideration of exergy 

analysis on diverse environmental conditions. 

Exergy analysis 

The exergy balance of the evaporative cooling 

system for the control volume can be obtained by 

in out dest lostEx Ex Ex Ex     
    (1)

 

where inEx , outEx , destEx  and lostEx  are the exergy 

input rate, exergy output rate, exergy destruction 

rate and exergy loss rate, respectively.  

The exergy input rate inEx ,is defined by 

, ,in in da in wEx Ex Ex   
    (2)

 

, ,in in da in wEx Ex Ex   
    (3)

 

,in w w w da SI wm e m eEx   
    (4)

 

Specific exergy rate of dry air is defined by 
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and specific exergy rate of water at ambient 

temperature is defined by 

0 0( ) ( ) 0 ( ) ( )

( ) ( ) 0

( ) ( )

( ) ln

SI SI

SI SI

w f T g T f T g T

sat T f T wv

e h h T s s

P P v R T

   

      (6) 

Where relative humidity is defined by  

0

sup ply

P

P
 

  
 (7)

 

The exergy output rate 
outEx ,is defined by 

out da tm eEx  
   (8)
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Rate of exergy loss is defined by 

01loss cooling

SI

T
Q

T
Ex

 
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 (11)

 

Rate of exergy destruction is defined by 

dest in out lostEx Ex Ex Ex     
   (12) 

Rate of entropy generated   

0

destEx

T
S 


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 (13)
 

Exergy or second law of thermodynamics efficiency 

is defined by  

out t

in da SI w

Ex e

Ex e e
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




   

 (14)
 

Thermal Specific exergy of moist air 

0
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Mechanical Specific exergy of moist air 

0
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 (16)

 

Chemical Specific exergy of moist air 
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Total Specific exergy of moist air
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Specific exergy of water 
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Exergy Analysis for DEC 

1 2 0a a w w a a Im m m       
   (20)

 

2 1( )w am m          (21)
 

Sustainability assessment 

Sustainability assessment is required the resources 

to be used efficiently, and also it is performed with 

sustainability index (SI) method which is related to 

exergy efficiency ( ). Exergy methods are essential 

in improving efficiency that allows society to 

maximize the benefits it derives from its resources 

while minimizing the negative impacts such as 

environmental damage (Rosen et al., 2008). So, SI 

method based on exergy efficiency is a useful tool to 

obtain sustainability assessment as follows:  

1

1
SI





 (22) 

Variation in Saturation Efficiency  

 Wet-bulb saturation efficiency of DEC 

decreases with increase in the air mass flow rate. 

This is expected because with increase in air mass 

flow rate, air has lesser contact time with water 

layer causing less evaporation of water. Saturation 

efficiency of DEC increases with increase in the 

thickness of cooling pads. This is also expected 

because with increase in the thickness of the cooling 

air gets greater contact time with water layer 

causing higher evaporation of water. For 5 cm thick 

pads saturation efficiency varied from 48.7 to 59.6%, 

for 10cm thick pads saturation efficiency varied from 

70.4 to 80.1% and for 15cm thick pads saturation 

efficiency varied from 81.9 to 88.5%. The overall 

variation in the saturation efficiency is from 48.7 to 

88.5%. 

 

 
Fig. 1.  Variations of saturation efficiency of pads of 

different thickness with Reynolds number.  
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Exergy Efficiency 

 For 5 cm thick pads Exergy Efficiency varied 

from 16.9 to 17.5 for 10cm thick pads Exergy 

Efficiency varied from 19.7 to 19.9 and for 15cm 

thick pads Exergy Efficiency varied from 21.4 to 22.1.  

The overall variation in the Exergy Efficiency is from 

16.9 to 22.1. 

 
Fig. 2.  Variations of Exergy Efficiency of DEC with 

Wet bulb Depression. 

Irreversibility 

For 5 cm thick pads Irreversibility varied from 391 to 

983 for 10cm thick pads Irreversibility varied from 

511 to 1273 and for 15cm thick pads Irreversibility 

varied from 580 to 1407.  The overall variation in the 

Irreversibility is from 391 to 1407. 

 
Fig. 3.  Variations of Irreversibility in DEC with Wet 

bulb Depression. 

Entropy Generation 

For 5 cm thick pads Entropy Generation varied from 

1.202 to 1.21for 10cm thick pads Entropy 

Generation varied from 1.252 to 1.26 and for 15cm 

thick pads Entropy Generation varied from 1.852 to 

4.65.  The overall variation in the Entropy 

Generation is from 1.202 to 4.65 

 
Fig. 4.  Variations Entropy Generation during DEC 

with Wet bulb Depression. 

Sustainability Index (SI) 

For 5 cm thick pads SI varied from 1.202 to 1.21for 

10cm thick pads SI varied from 1.252 to 1.26 and for 

15cm thick pads SI varied from 1.852 to 4.65.  The 

overall variation in the SI is from 1.202 to 4.65. 

 
Fig. 5.  Variations of Sustainability Index of DEC with 

Wet bulb Depression. 

Exergetic EER  

 
Fig. 6.  Variations of Exergetic Energy Efficiency Ratio 

of DEC with Wet bulb Depression. 

For 5 cm thick pads EEREX varied from 0.712 to 1.76 

for 10cm thick pads EEREX varied from 1.422 to 3.56 

and for 15cm thick pads EEREX varied from 1.852 to 

4.65.  The overall variation in the EEREX is from 0.712 

to 4.65. 

Conclusion 

In this paper exergy analysis of direct 

evaporative cooling system is presented. Variations 
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in wet bulb saturation efficiency, Second Law 

Efficiency, Irreversibility, Entropy Generation, 

Sustainability Index, and Exergetic EER are analyzed 

for pads of different thickness with constant face 

velocity. It is observed that for a give thickness of 

pads Second Law Efficiency does not changes as wet 

bulb saturation efficiency changes. Irreversibility and 

entropy generation vary in same manner for given 

thickness of pads. Sustainability index curve is 

almost flat for pads of given thickness, however it 

increases slightly with the thickness of the pads. 
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