

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Email:editorijoer@gmail.com http://www.ijoer.in

Vol.4., Issue.3., 2016
(May-June)

140 M.SIVAKUMAR, P.NAGAMALLAIAH,P G VARNA KUMAR REDDY

1. INTRODUCTION

PCI express is a 3rd generation high

performance I/O bus used to interconnect

peripheral devices in applications such as mobile,

desktop, workstations, server, embedded computing

and communication platforms. In PCI express, high

speed links can currently transfer up to 2.5Gbps, and

future implementations of PCI express will support

as much as 10Gbps. PCI express technology

implements a serial, point-to-point kind

interconnect for communication between 2 devices.

A serial interconnect between 2 devices results in

fewer pins for device package, which reduces the

PCI express chip, board design cost and design

complexity.

PCI express implements switch-based

technology to interconnect an oversized variety of

devices. Communication over the serial interconnect

is accomplished using a packet based

communication protocol. Physical layer link could be

configured varying from 1-32 lanes, with each lane

carrying a most data rate of 2.5Gbits/sec PCI express

protocol follows a layered structure similar to the

OSI model and contains of the following four layers:

software Layer, transaction Layer, link Layer, and

Physical Layer.

Point-to-point interconnects: PCI express

interconnect consists of either a x1, x2, x4, x8, x12,

x16 or x32 point-to-point Link. A PCI express Link is

that the physical association between just two

devices. A Lane consists of signal pairs in every

RESEARCH ARTICLE ISSN: 2321-7758

DESIGN AND IMPLEMENTATION OF A PCI EXPRESS PHYSICAL LAYER TRASMIT

PROTOCAL

M.SIVAKUMAR1,P.NAGAMALLAIAH2,P G VARNA KUMAR REDDY3
1,2,3Academic assistant,

ECE Department, JNTUACEP, Pulivendula, Kadapa. A.P.

ABSTRACT
The project deals with the design of PCI Express physical layer transmit protocol,

which connects to the link on one side and connects to the data link layer on the

other side. It essentially processes packets arriving from the data link layer , and

converts them into serial bit stream. The bit stream is clocked out at 2.5Gbits/sec

per lane onto the link. The physical layer frames and deframes the TLPs and DLLPs

with start and end characters. In Transmit logic the framed packet is sent to the byte

stripping logic, which multiplexes the bytes of the packet onto the lanes and

performing the CRC check on the payload data.

The Receive logic deframes the packet and perform descramble, 8b/10b decoding,

coverts serial to parallel data. Scrambler uses an algorithm to pseudo-randomly

scramble each byte of the packet. The 8b/10b encoder encodes scrambled

characters into 10-bit symbols, which are converted to serial bit stream by the

parallel to serial converter.

©KY Publications

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Email:editorijoer@gmail.com http://www.ijoer.in

Vol.4., Issue.3., 2016
(May-June)

141 M.SIVAKUMAR, P.NAGAMALLAIAH,P G VARNA KUMAR REDDY

direction. an x1 Link consists of 1 Lane or 1

differential signal pair in every direction for a total

of 4 signals. an x32 Link consists of 32 Lanes or 32

signal pairs for every direction for a total of 128

signals. Note that the Link only supports a

symmetric number of Lanes in every direction, and

does not support asymmetric topologies that would

have more lanes from Device A than are sent by

Device B in return. Throughout hardware

initialization, the Link is automatically initialized for

Link width and frequency of operation by the

devices on opposite ends of the Link. Neither the OS

nor computer code is firmware during Link level

formatting.[1]

Figure 1.1:Link in terms of Lanes

2. PCI EXPRESS

2.1 PCI Express Topology:

The major components of the PCI express

system shown in Figure 1.4 include a root complex,

switches, and endpoint devices. A Root complex

connects the cpu and memory subsystem to the PCI

express fabric. it may support several PCI express

ports, and this instance shows it supporting three

ports. each port is connected to an end point device

or else to a switch that then forms a sub hierarchy.

the root complex generates transaction requests on

behalf of the cpu. In response to cpu commands, it

generates configuration, memory and IO requests as

well as locked transaction requests on the PCI express

fabric. the root complex transmits packets out of its

ports and also receives packets into its ports which it

then forwards to memory or the cpu. A multi-port

Root advanced may optionally route packets from

one port to another port (supporting peer-to-peer

transactions) but is not required by the specification

to do so legacy Endpoints might support IO

transactions, and should support locked transaction

semantics as a completer however not as a requester.

Interrupt-capable bequest devices might support

bequest style interrupt generation using message

requests however also support MSI generation

exploitation memory should write transactions.

Bequest devices aren't needed to support 64-bit

memory addressing capability.

 Figure 2.1: PCI Express Topology

2.2 PCI EXPRESS LAYERS:

Figure 2.2: PCI Express Layered Architecture

The PCI express architecture is specified in

layers, as shown in figure 2.2. Compatibility with the

PCI addressing model load-store architecture with a

flat address space is maintained to ensure that all

existing applications and drivers operate unchanged.

The PCI express configuration uses customary

mechanisms defined within the PCI plug-and-play

specification.

 The software layers will generate read and

write requests that are transported by the

transaction layer to the I/O devices employing a

packet-based, split-transaction protocol. The link

layer adds sequence numbers and CRC to these

packets to create a highly reliable data transfer

mechanism. the essential physical layer consists of a

dual simplex channel implemented as a transmit pair

and a receive pair[1][2].

2.2.1 Physical Layer

The fundamental PCI express link consists of

two low-voltage AC-coupled differential pairs of

signals (a transmit pair and a receive pair). The

physical link signal uses a de-emphasis scheme to

PCI PnP Model (init,enum,config)

PCI Software/Driver Model

Packet-based Protocol

Data Integrity

Point-to-Point,Serial,differential… Future speeds and

encoding technologies

only impact physical layer

No OS Impact

Transaction

Data Link

OS Config

S/W

Physical

PCI PnP Model (init,enum,config)

PCI Software/Driver Model

Packet-based Protocol

Data Integrity

Point-to-Point,Serial,differential… Future speeds and

encoding technologies

only impact physical layer

No OS Impact

Transaction

Data Link

OS Config

S/W

Physical

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Email:editorijoer@gmail.com http://www.ijoer.in

Vol.4., Issue.3., 2016
(May-June)

142 M.SIVAKUMAR, P.NAGAMALLAIAH,P G VARNA KUMAR REDDY

scale back so symbol interference, to reduce rising

information integrity. a information clock is

embedded using the 8b/10b encoding scheme to

achieve very high data rates. The initial signal

frequency is 2.5Gb/s/direction and this is expected to

increase with advances in silicon technology to 10

GB/s/direction (the practical maximum for signals in

copper). The physical layer transports packets

between the link layers of two PCI express agents.

The bandwidth of a PCI express link may be linearly

scaled by adding signal pairs to form multiple lanes

PCI links are 8b/10b encoded. This has the

net effect of reducing usable PCIe lane bandwidth to

2 gigabits. PCIe uses the commonly used 10-bit

control codes to communicate at this layer. Such

communication includes link width negotiation, lane

reversal, and packet delimiting. All PCIe packets are

32-bit aligned and the K code delimiters are included

in that alignment restriction.

2.2.2 Data Link Layer

The primary role of a link layer is to confirm

reliable delivery of the packet across the PCI express

link(s). The link layer is responsible for information

integrity and adds a sequence number and a CRC to

the dealing layer packet as shown in Figure two.3

below. Most packets area unit initiated at the

transaction layer. A credit-based, flow control

protocol ensures that packets area unit transmitted

only it's known that a buffer is available to receive

this packet at the opposite end, that eliminates any

packet retries and also the associated waste of bus

bandwidth due to resource constraints. The link layer

can automatically retry a packet that was signaled as

corrupted. the information link layer adds data

integrity features

2.2.3 Transaction Layer

The transaction layer receives read and

write requests from the software layer and creates

request packets for transmission to the link layer. All

requests are implemented as split transactions and

some of the request packets require a response

packet. The transaction layer also receives response

packets from the link layer and matches these with

the original software requests. Each packet has a

unique identifier that enables response packets to

be directed to the correct originator. The packet

format offers 32-bit memory addressing and

extended 64-bit memory addressing. Packets also

have attributes such as “no-snoop,” “relaxed

ordering,” and “priority,” which may be used to

route these packets optimally through the I/O

subsystem.

 The transaction layer provides four address

spaces – three PCI address spaces (memory, I/O and

configuration) and message space. PCI 1.4 introduced

an alternate method of propagating system

interrupts called message signaled interrupt (MSI).

Here a special-format memory-write transaction was

used instead of a hard-wired sideband signal, as an

optional capability in a PCI 1.4 system. The PCI

Express specification reuses the MSI concept as a

primary method for interrupt processing and uses a

message space to accept all prior sideband signals,

such as interrupts, power-management requests, and

resets, as in-band messages. Other “special cycles”

within the PCI 1.4 specification, such as interrupt

acknowledge, are also implemented as in-band

messages. You could think of PCI Express messages as

“virtual wires” because their effect is to eliminate the

wide array of sideband signals currently used in a

platform implementation

3. DESIGNING OF PCI EXPRESS

3.1 Design Blocks

3.1.1 TLP FIFO, DLLP FIFO

 FIFO’s are used commonly in

electronic circuits for buffering and flow control. In

hardware form a FIFO primarily consists of a set of

read and writes pointers, storage and control logic.

A synchronous FIFO is a FIFO where the clock is used

for both reading and writing. Examples of FIFO

status flags include: full, empty, almost full, or

almost empty. In hardware FIFO is used for speed

synchronization purposes. FIFO Empty: When

difference of read pointer and write pointer equal to

the length of the FIFO, then it triggers the FIFO

Empty signal. FIFO Full: When read pointer and write

pointer are equal, and then it triggers the FIFO Full

signal.

 we use two types of FIFO’S: TLP FIFO

(32x8) and DLLP FIFO (6x8).

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Email:editorijoer@gmail.com http://www.ijoer.in

Vol.4., Issue.3., 2016
(May-June)

143 M.SIVAKUMAR, P.NAGAMALLAIAH,P G VARNA KUMAR REDDY

TLP FIFO

Figure 3.1(a) Top level Module of TLP FIFO

DLLP FIFO

Figure 3.1(b) Top level Module of DLLP FIFO

Functional Description:

From The Figures 3.1(a) and 3.1(b) TLP’s

and DLLP’s (packets) from the data link layer are

clocked into a transmit buffer using TLP FIFO and

DLLP FIFO. With the aid of multiplexer the physical

layer frames the TLP’s or DLLP’s with start and end

characters. These characters are framing symbols

which the receiver device uses to detect start and

end of packet. The transmit buffer uses a throttle

signal to stop the flow of packets from the data link

layer.

3.1.2 SCRAMBLER

Scrambler Algorithm:

 The scrambler in figure 3.1.2 is

implemented with a 16-bit Linear Feedback Shift

Register (LFSR) that implements the polynomial:

G(x) = X
16

+X
5
+X

4
+X

3
+1

The LFSR is clocked at the bit transfer rate.

The LFSR output is serially clocked into an 8-bit

register that is XORed with the 8-bit characters to

form the scrambled data.

Figure 3.1.2 Scrambler Block diagram

Scrambler implementation rules:

 Scrambling is applied to ‘D’ characters associated

with TLP and DLLP’s, including the Logical Idle

(00h) sequence. ’D’ characters within the TS1 and

TS2 Ordered-Set are not scrambled.

 ‘K’ characters and characters within Ordered Sets

such as TS1, TS2, SKIP, FTS and Electrical Idle

Ordered-Sets are not scrambled. These

characters bypass the scrambler logic.

 Compliance Pattern related characters are not

scrambled.

 When a COM character exits the Scrambler,

(COM does not get scrambled) it initializes the

LFSR. The initialized value of the 16-bit LFSR is

FFFF h. Similarly on the receiver side, when a

COM character enters the De-Scrambler, it is

initialized.

By default, Scrambling is always enabled. Although

the specification does allow the Scrambler to be

disabled for test and debug purposes, it does not

provide a standard software or configuration

register-related method to disable the Scrambler.

3.1.3 STATE MACHINE CONTROLER (SMC)

Description: By the Figure 3.1.3 At start, When Rst is

active state machine goes to IDLE state and it will

reside in that state until ‘TxEna’ signal is activated.

When this ‘TxEna’ signal asserted this goes to

ByteStripStart State. This state is for sending first

three bytes of the TLP or DLLP by appending

respective start character depending upon

‘TLPPackEna’ or ‘DLLPPackEna’ signals. Control will

be resided in this state for 9 clock pulses. For 10
th

Clock pulse Encoding state will be reached and for

the next clock pulse SMC will generate control

TLPFIFO

32X8

ByteClk

Rst

DataIn [7:0]

ValidData

TLPFull

TLPData [7:0]

TLPEmpty
TLPFIFOEna

TLPWrEna

TLPFIFO

32X8

ByteClk

Rst

DataIn [7:0]

ValidData

TLPFull

TLPData [7:0]

TLPEmpty
TLPFIFOEna

TLPWrEna

DLLPFIFO

6X8

ByteClk

Rst

DataIn [7:0]

ValidData

DLLPFull

DLLPData [7:0]

TLPEmpty
DLLPFIFOEna

DLLPWrEna

DLLPFIFO

6X8

ByteClk

Rst

DataIn [7:0]

ValidData

DLLPFull

DLLPData [7:0]

TLPEmpty
DLLPFIFOEna

DLLPWrEna

X 1X 0 X 2 X 3 X5X4XOR XOR XOR X15X14

k+7 K+6 K+5 K+4 K+3 K+2 K+1 k

k+7 k+6 k+5 k+4 k+3 k+2 k+1 k

XOR XOR XOR XOR XOR XOR XOR XOR

H G F E D C B A

H ’ G ’ F ’ E ’ D ’E ’ D ’ C ’ B ’ A ’

Scrambler output Scr[k+7:k]

[H,G,F,E,D,C,B,A] XOR [Scr(k+7:k)]

[H’,G’,F’,E’,D’,C’,B’,A’]=

Byte Clock

X 1X 0 X 2 X 3 X5X4XOR XOR XOR X15X14

k+7 K+6 K+5 K+4 K+3 K+2 K+1 k

k+7 k+6 k+5 k+4 k+3 k+2 k+1 k

XOR XOR XOR XOR XOR XOR XOR XOR

H G F E D C B A

H ’ G ’ F ’ E ’ D ’E ’ D ’ C ’ B ’ A ’

Scrambler output Scr[k+7:k]

[H,G,F,E,D,C,B,A] XOR [Scr(k+7:k)]

[H’,G’,F’,E’,D’,C’,B’,A’]=

Byte Clock

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Email:editorijoer@gmail.com http://www.ijoer.in

Vol.4., Issue.3., 2016
(May-June)

144 M.SIVAKUMAR, P.NAGAMALLAIAH,P G VARNA KUMAR REDDY

signals corresponding to retrieve remaining bytes of

the Packet.

Figure

3.1.3: State Machine Diagram of Transmitter

Now, if it is ‘TLPPackEna’ asserted control

goes to TLPByteStrip state otherwise it goes to

DLLPByteEnd state. In TLPByteStripState it will be for

4 clock pulses and for 5 clock pulses in the Scrambler

state and for Last clock pulse in the Encoding state.

Like this, for sending any single byte on to single

lane it will take 10 clock pulses. Finally, for sending 4

bytes of data on to 4 Lane Link we require 10 clock

pulses.

 In TLPByteStrip state, if ‘TLPByteCntOvr’

signal is asserted it will append END characters as

the last byte of the packet. Similarly, in DLLPByteEnd

state also END character will be appended and goes

to Encoding state. In Encoding state control signals

are issued to do Encoding and serialization. And

immediately it has to come to other state. But to

keep up this serialization signals until last bytes have

transmitted we selected another state that is

LastByte state. In this state, simply it counts 10 clock

pulses to send the Last four 10-bit symbols and then

goes to IDLE state. Until another packet comes

control will be in that state only.

4 SIMULATION RESULTS

In the Figure 4.3 circle indicates initializing

all input data. It means that 0ns to 1000ns all are

input data. After 1000ns the output data will start in

binary right shifting data.

In the Figure 4.4 circle indicates initializing

all input data. It means that 0ns to 1000ns all are

input data. After 1000ns the output data will start in

binary right shifting data.

Fig 4.1 Top module of PCITx4Lane

Fig 4.2 RTL Schematic of PCITx4Lane

Figure 4.3: output simulation results by giving

50,100,150,200 input data

Encoding

TxEna

LastByteInd & (DLLPEna || TLPEna)

ByteStripOvr

ScrCntOvr

LastByteCntOvr

Scrambler

ByteStrip

Start

TLPByte

Strip

DLLPByte

End

IDLE

LastByte

ScrCntOvr

ByteStripOvr

Start

!LastByteInd & DLLPEna

!LastByteInd & TLPEna

LastByteInd & ! (DLLPEna || TLPEna)

EncodingEncoding

TxEna

LastByteInd & (DLLPEna || TLPEna)

ByteStripOvr

ScrCntOvr

LastByteCntOvr

ScramblerScrambler

ByteStrip

Start

ByteStrip

Start

TLPByte

Strip

TLPByte

Strip

DLLPByte

End

DLLPByte

End

IDLEIDLE

LastByteLastByte

ScrCntOvr

ByteStripOvr

Start

!LastByteInd & DLLPEna

!LastByteInd & TLPEna

LastByteInd & ! (DLLPEna || TLPEna)

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Email:editorijoer@gmail.com http://www.ijoer.in

Vol.4., Issue.3., 2016
(May-June)

145 M.SIVAKUMAR, P.NAGAMALLAIAH,P G VARNA KUMAR REDDY

Figure 4.4: output simulation results by giving

220,230,240,250 input data

5 CONCLUSION

Various individual modules of PCI EXPRESS

Transmitter and Receiver have been designed,

verified functionally using VerilogHDL (ModelSim),

synthesized by the XILINX synthesis tool, and a final

net list has been created.

This design of the PCI EXPRESS Transmitter is

capable of transmitting Data at 2.5GBps. This design

of the PCI EXPRESS Receiver is capable of receiving

Data at 2.5GBps.The Functional-simulation has been

successfully carried out with the results matching

with the expected ones

The design has been synthesized using FPGA

technology from Xilinx .Finally, implemented on

XILINX FPGA VIRTEX Board and tested its

functionality using Chip Scope Pro tool.

6 FUTURE WORK

PCI Express architecture provides smooth

migration to future. PCI Express provides advanced

features for the next decade of Compute &

Communication platforms.

 PCI Express Server I/O Module.

 PCI Express Cable Specification.

 High End Graphics Electro Mechanical

Specification.

 Advanced Switching Specification.

 Enhanced configuration of 4Kb/device.

 New Card connector.

 Server Input and Output Module (SIOM).

 Native Hot Plug support for new form

factors and modules Express Card.

PCI Express enables new usage models

Isochronous support for streaming media for TV

Tuners, graphics, camera. In the future, PCI Express

communication frequencies are expected to double

and quadrupled to 5Gbps and 10Gbps .Taking

advantage of these frequencies will require Physical

Layer re-design of a device with no changes

necessary to the higher layers of the device design.

7 REFERENCES

[1]. PCI Express Base Specification Revision 1.1,

PCI-SIG, March 28, 2003.

http://www.pcisig.com/specifications/pciex

press/base

[2]. PCI Express System Architecture, Mind

share, Inc. 2003

[3]. PCI Express System Architecture Book, First

Edition, First Printing, September 2003.

[4]. PCI Express System Architecture Book, First

Edition, Second Printing, December 2003.

[5]. Intel Developer Website

http://www.intel.com/technology

[6]. Michael John Sebastian Smith,

“Application-Specific Integrated Circuits”,

Published By Pearson Education (singapore)

pvt.Ltd.

[7]. Milos Ercegovac, Tomas Lang “Introduction

to Digital Systems”, Published by John

Wiley & Sons

[8]. Douglas J Smith, “HDL Chip Design”, Done

publications Fourth Edition 2002.

[9]. Synthesis and Verification Design

Guide: http://xillinx.com/.

[10]. Elastic Buffer Implementations in PCI

Express Devices, MindShare, Inc., Joe

Winkles , November 2003.

http://www.pcisig.com/specifications/pciexpress/base
http://www.pcisig.com/specifications/pciexpress/base
http://xillinx.com/

