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I.  INTRODUCTION 

 Functionally graded material (FGM) consists 

of two or more dissimilar materials in which the 

volume fraction of constituent materials is varied 

continuously as a function of position along certain 

dimension(s) of the structure thereby varying its 

properties accordingly. FGMs can be used in several 

engineering sectors such as the aerospace, aircraft, 

automobile, defense industries, electronic and the 

biomedical sectors. Many machine and structural 

components in aforesaid sections can be modeled as 

beams[11]. A literature survey is carried out and an 

overview of the survey is given below. 

 Kocatu, T investigated the dynamic 

deflections of eccentrically prestressed viscoelastic 

Timoshenko beam subjected to a moving harmonic 

load with a constant velocity and also compared the 

obtained natural frequencies of the Timoshenko 

beams with previously published results based on 

the Timoshenko beam theory and exact results 

based on the Euler–Bernoulli beam theory[1]. 

Yunmin, Chen Changjing and Wang have obtained 

the displacement solutions of a T-beam resting on 

an elastic half-space subjected to a uniformly 

moving load by introducing the equivalent stiffness 

of the half space interacting with the beam[2]. Li, 

Fu-leSun and Zhi-zhong have developed a finite 

difference scheme by the method of reduction of 

order and shown by the discrete energy method 

that the scheme is uniquely solvable, 

unconditionally convergent and stable[3]. 

 Zhang and Chun-guowe have considered 

the system of nonhomogeneous undamped 

Timoshenko beam having both ends free with some 

sufficient conditions and some necessary conditions 

for the system to have exponential stability based 

on the operator semigroup technique, the multiplier 

technique, and the contradiction argument of the 

frequency domain method[4].A microstructure-

dependent model is developed for the Timoshenko 
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beam by using a modified couple stress theory 

andHamilton’s principle. The new model contains a 

material length scale parameter to account for the 

microstructural effect, unlike the classical 

Timoshenko beam theory. The inclusion of this 

additional material constant enables the new model 

to capture the size effect. In addition, both bending 

and axial deformations are considered, and 

Poisson’s effect is included in the current variational 

formulation, which are different from existing 

Timoshenko beam models. When the 

microstructural and Poisson effects are both 

neglected, the new model recovers the classical 

Timoshenko beam model[5]. 

 Yesilce, Yusuf Demirdag and OktayIn have 

obtained the frequency values and mode shapes for 

freevibration of the multi-span Timoshenko beam 

subjected to a constant axial compressive force with 

multiple spring-mass systems for different number 

of spans and spring- masses with different locations 

and for different values of axial force[6]. 

 Dong, S B Alpdogan, CTaciroglu and E have 

worked on three-dimensional information and 

numerical data to clarify many issues on shear 

correction factors of Timoshenko beam theory. The 

displacements (in the SAFE formulation) were vital 

to the visualization of transverse shear ef- fects in 

beams of various cross-sections[9].W. Q. Chen et al 

worked on exact three-dimensional elasticity 

solutions for FGM thick plates resting on a Winkler–

Paster- nak elastic foundation, using the state space 

method and found that the effects of foundation 

stiffness on mechanical responses of the plate are 

considerably different, especially for the strongly 

thick plates, and that, for a given FGM thick plate, 

the mechanical behavior of the plate with the softer 

surface supported by elastic foundation differ 

significantly from that of the plate with the harder 

surface subjected to the same foundation[7].Ying, J 

Lü, CF Chen, WQ investigated two-dimensional 

elasticity solutions for bending andfree vibration of 

functionally graded beams resting on Winkler–

Pasternak elastic foundations and adopted 

trigonometric series for the fully simply supported 

beams to translate the partial differential state 

equation into an ordinary one, thus making exact 

solutions possible[8]. 

 Though the literatures on static and 

dynamic stability of isotropic beams are plenty, the 

literature on functionally graded beams on elastic 

foundations reported very less to the best of the 

authors’ knowledge. In the present article, FGO 

beamshinged at both the ends and resting on 

parabolic elastic foundation is considered for 

dynamic stability analysis. This document is a 

template. An electronic copy can bedownloaded 

from the conference website. For questions onpaper 

guidelines, please contact the conference 

publicationscommittee as indicated on the 

conference website. Information about final paper 

submission is available from the conference website. 

II.  PROCEDURE  

 A functionally graded sigmoid beam with 

steel and aluminium as its constituent phases is 

considered for analysis as shown in Fig.1(a). The 

beam, hinged at both the endsis subjected to a 

dynamic axial load   tPPtP ds cos . Where, t is 

time, 
sP  is the static component, 

dP is the amplitude 

of the dynamic component and   is the frequency 

of the applied dynamic load component of  tP . The 

mid-longitudinal(x-y) plane is chosen as the 

reference plane for expressing the displacements as 

shown in fig. 1(b). The thickness coordinate is 

measured as z from the reference plane. The axial 

displacement, the transverse displacement, and the 

rotation of the cross-section are u , w and   

respectively. Fig. 1(c) shows a two nodded beam 

finite element having three degrees of freedom per 

node.   

 
 

Fig. 1(a) Functionally graded beam subjected to 

dynamic axial load. 

 

 

 

P(t) 
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Fig. 1(b) The coordinate system with generalized 

forces and displacements for the FGSW beam 

element. 

 
Fig. 1(c) Beam element showing generalized degrees 

of freedom for i
th

 element. 

 The generalized displacement vector of the 

element can be given as 

   111
ˆ

 iiiiii wuwuu   

The equation of motion for the element 

subjected to axial force  tP can be expressed in 

terms of nodal degrees of freedom as 

          0ˆˆ  uktPkum gef
   

The axial load  tP  is taken as 

  tPPtP d   cos , 

so that,  PPs   and  PP dd  . P is the critical 

buckling load of an isotropic beam with similar 

geometrical dimensions and end conditions and  , 

d  are called static and dynamic load factors 

respectively[10]. Consideringthe application of static 

and dynamic component of load in the same 

manner we have eq.(2.2) in the following form  

     feef kkk   

where,  ek ,  fk , 
 m  and  gk  are element elastic 

stiffness matrix, foundation stiffness matrix, mass 

matrix and geometric stiffness matrix respectively. 

Assembling the element matrices as used in eq. 

(2.3), the equation in global matrix form which is the 

equation of motion for the straight beam, can be 

expressed as     

          0ˆcosˆ   UKtPKUM gdef 


     feef KKK   

 M ,  eK ,  fK ,  gK are global mass, elastic 

stiffness, foundation stiffness and geometric 

stiffness matrices respectively and  Û  is global 

displacement vector. Equation (2.4) represents a 

system of second order differential equations with 

periodic coefficients of the Mathieu-Hill type. The 

periodic solutions for the boundary between the 

dynamic stability and instability zones can be 

obtained from Floquet Theory (BOLOTIN (1964)) as 

follows. A solution with twice the time period which 

is of practical importance is represented by 

 
2

cos
2

sinˆ
11

t
d

t
ctU





 ,  

considering first order expansion. 

Substituting eq. (2.5) into eq. (2.4) and comparing 

the coefficients of 
2

sin
t  and 

2
cos

t  terms the 

condition for existence of these boundary solutions 

with twice the time period  is given by 

          0ˆ
4

2/
2








 
  UMKPK gdef 

Equation (2.6) represents an eigenvalue problem for 

known values of , 
d , and P . This equation gives 

two sets of eigenvalues   binding the regions of 

instability due to the presence of plus and minus 

sign. The instability boundary can be determined 

from the solution of the equation 

        0
4

2/
2




  MKPK gdef   

2.1 Free vibration 

When  =0, d =0, and 
2


  , eq. (2.7) is 

reduced to a problem of free vibration as 

    02  MKef     

The solution of eq. (2.8) gives the value of natural 

frequencies    

2.2 Static stability 

When  =1, d =0, and 0 , eq. (2.7) is reduced 

to the problem of static stability as 

(2.1) 

(2.2) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 
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    0 

gef KPK   

The solution of eq. (2.9) gives the values 

of buckling loads. 

2.3 Regions of instability: 

1 , the fundamental natural frequency and 
P  the 

critical buckling load of an isotropic beam with same 

geometrical dimensions and end conditions are 

calculated from eq. (2.8) and eq. (2.9) respectively. 

Choosing 
1

1





 








 , eq. (2.7) can be rewritten as 

 
The solution of eq. (2.10) will give two sets of values 

of 










1

 forgiven values of  , 
d , 

P , and 1 . The plot between d  and 










1

 will 

give the regions of dynamic instability. 

3 Element matrices 

The element matrices for the SFG beam element are 

derived following the procedure as proposed by 

Chakraborty et al (2003).  

3.1 Shape functions: 

The displacement fields according to first order 

shear deformation beam theory is expressed as  

),,(),,,(

),,(),(),,,(

txwtzyxW

txztxutzyxU



 
 

The cross-sections are assumed to remain plane 

after the deformation. 

The longitudinal and shear strains are   

x

w

x
z

x

u
xzxx














 


 ,  

  

where 
x

w



  is the slope of the deformed longitudinal 

axis . The stress-strain relation in matrix form can be 

given by 

 




























xz

xx

xz

xx

zGk

zE










)0

0)(
  (3.3) 

Where xx  is the normal stress in longitudinal 

direction and 
xz is shear stress in zx  plane, 

)(zE is Young’s modulus and )(zG  is shear 

modulus and k  is shear correction factor. 

The material properties of the FGM that varies along 

the thickness of the beam are assumed to follow 

sigmoid distribution given by 

     2/01)( 11 hzzgRzgRzR bt  ,                    

(3.4) 

 
n

h

z
zg 










2
1

2

1
11  

n

h

z
zg 










2
1

2

1
2

(3.5) 

where, )(zR  denotes a material property such as, 

E , G ,   etc., 
tR  and 

bR denote the values of the 

properties at topmost and bottommost layer of the 

beam respectively, and n is an index. 

The kinetic energy T  and elastic strain energy S  of 

an element are given respectively as 

dAdx
t

W

t

U
zT

l

A 



































  

22

0

)(
2

1


dAdx
xx

u
z

x
z

x

u
zES

l

A

 































































0

2

2

2

2)(
2

1 

 

 






























l

A

dAdx
x

w

x

w
zG

0

2

2 2)(
2

1


  
 The governing differential equations can be derived 

by applying Hamilton’s principle as presented below. 

0
)(






u

ST , 0
)(






w

ST , and 0
)(








ST  

The shape functions for the displacement field for 

finite element formulation are obtained by solving 

the static part of the eq. (3.8) with the following 

consideration. 

 ,2

321 xaxaau   

 ,3

7

2

654 xaxaxaaw 
 

 
.2

1098 xaxaa    

     

  

The above displacement fields are substituted in the 

static part of Eq.(3.8) in order to find out the 

constants of polynomials. Subsequently, the 

displacement fields are expressed in terms of the 

nodal degree of freedoms as follows. 

(3.1) 

(3.2) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(2.9) 
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       uxwuu
T

ˆ    (3.10) 

 x , a 3x6 matrix is the  required shape function. 

Better convergence can be achieved as the shape 

functions are obtained from the exact solution of 

static part of the governing differential equation. 

Now the shape function can also be expressed as 

        Twu xxxx 
 

where,  xu ,  xw ,  x  are 

the shape functions for the axial, transverse and 

rotational degree of freedom respectively. 

3.2 Element elastic stiffness matrix 

The general force boundary conditions for the 

element can be given as 

 









A

xxx
x

B
x

u
AdAN


 1111

 

 














A

xzx
x

w
AdAV  55

 

 









A

xxx
x

D
x

u
BdAzM


 1111

 (3.12) 

where, 
xN , 

xV , 
xM are axial force, shear force and 

bending moment respectively acting at the 

boundary nodes.Similarly substituting eq. (3.10) into 

eq. (3.12) we get 

 

 (3.13)  

 

Where 

   Txxxxxx lMlVlNMVNF )()()()0()0()0( 

is the nodal load vector and  

 ek  is the required element elastic stiffness matrix. 

3.3 Element elastic foundation matrix: 

The work done by the foundation is given by the 

expression 

 

l

vf dxwxkW
0

2

2

1  

        

l

w

T

wv

T
dxuxku

0

ˆˆ
2

1  

    uku f

T
ˆˆ

2

1
  (3.14) 

Where, 
vk is the foundation stiffness parameter per 

unit width of the beam and 

       

l

w

T

wvf dxxkk
0

 is element foundation 

stiffness matrix. 

The foundation stiffness that varies along the length 

of beam considered in present study is as follows.  

 21 xkk ov   for parabolic variation of 

foundation stiffness. The foundation modulus is 

used for analysis purposes. EILkK o /4 . The 

foundation modulus is calculated using an identical 

steel beam. 

3.4 Element geometric stiffness matrix 

When an axial load P  is applied on the beam 

element, the work done by the load can be 

expressed as 

 













l

p dx
x

w
tPW

0

2

)(
2

1
   (3.15) 

Substituting the value of w  from eq. (3.10) into eq. 

(3.15) the work done can be expressed as 

      dxuu
tP

W

l

w

T

w

T

p
ˆˆ

2

)(

0

''

   

   uku
tP

g
ˆˆ

2

)(
    (3.16) 

where,       

l

w

T

wg dxk
0

''  is called the element 

geometric stiffness matrix. 

III. RESULTS AND DISCUSSION 

The simulation is carried out for a sigmoid 

functionally graded (SFG) beam for simply 

supportedend conditions. The constituent phases 

chosen are steel and aluminum. The fundamental 

frequency and critical buckling load are calculated 

from eq.(2.8) and eq.(2.9) respectively for an 

isotropic beam made of steel and used to find the 

parametric instability regions. The calculated values 

are as follows: 
7

1 1033.11/6725 xPsrad    

 Thebeam with steel-rich bottom is 

considered for analysis of dynamic stability. The 

length of the beam is 0.5m, width is 0.1 m with 

various thicknesses. The material properties are as 

follows. 

    Fuke ˆ

(3.11) 
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Steel: E =2.1x10
11

 Pa, G =0.8x10
11

 Pa 

=7.85x10
3
kg/m

3
.  The shear correction factor k =  

0.8667. 

Aluminium: E =0.7x10
11

 Pa,  G =0.2697x10
11

 Pa, 

=2.707x10
3
kg/m

3
. 

 
Fig. 2 Effect of material properties on parametric 

instability of SFG beam resting on parabolic elastic 

foundation. 

 
Fig. 3 Effect of beam geometry on parametric 

instability of SFG beam resting on parabolic elastic 

foundation. 

 
Fig. 4 Effect of foundation on parametric instability 

of SFG beam resting on parabolic elastic foundation. 

 
Fig. 5 Effect of foundation parameter on parametric 

instability of SFG beam resting on parabolic elastic 

foundation. 

 Fig. 2 shows the effect of material 

properties on dynamic instability region for principal 

mode of beam of thickness 0.0625m with steel-rich 

bottom.The foundation parameter and foundation 

modulus are chosen as 0.4 and 500 respectively. As 

the power index increases the instability region 

shifts towards the dynamic load factor axis and its 

area gets widened as well that implies enhancement 

of instability of the beam. The effect of beam 

geometry on the dynamic instability of the beam is 

investigated and depicted in fig. 3. The instability 

region for principal mode is found to be shifted 

towards ordinate. The area of instability region 

increases noticeably with increase of slenderness 

parameter. Therefore the increase in slenderness 
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parameter makes the beam more prone to 

parametric instability. The effect of parabolic 

foundation on dynamic stability is investigated and 

shown in fig. 4. As expected the beam exhibits 

better stability with increase in foundation modulus. 

Fig. 5 shows the effect of foundation parameter on 

dynamic stability of the beam. The beam becomes 

slightly more prone to instability as the foundation 

parameter increases. 

IV. CONCLUSIONS 

Finite element method is used to investigate 

parametric instability of SFGbeam resting on 

parabolic elastic foundation. The following 

conclusions may be drawn from the above analysis: 

1. Foundation improves the dynamic stability 

behavior of the beam. 

2. Sigmoid distribution for designing FGM 

beams ensures enhancement in instability 

behavior with increase of power index. 
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