

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Email:editorijoer@gmail.com http://www.ijoer.in

Vol.4., Issue.3., 2016
(May-June)

497 YOJANA A. JADHAV, Prof. A. P. HATKAR

I. INTRODUCTION

 Audio and communications signal

processing are well developed lines massively used

now a days in many application lines and products.

Since digital communications are quite active fields,

the arithmetic complexity of the Discrete Fourier

Transform (DFT) algorithm becomes a significant

factor with impact in global computational costs.

Cooley and Tukey [1] developed the well-known

radix-2 Fast Fourier Transform (FFT) algorithm to

reduce the computational load of the DFT. The

Discrete Fourier Transform (DFT) X(k) of N points is

given by

(1)

Where the X(k) and x(n) are frequency-domain

sequences and time-domain sequence. Instead of

the direct implementation of the equation (1), the

FFT algorithm factorizes a large point DFT recursively

into many small point DFT in order to reduce the

RESEARCH ARTICLE ISSN: 2321-7758

FPGA IMPLEMENTATION OF FFT PROCESSOR USING DIFFERENT ALGORITHMS

YOJANA A. JADHAV1, Prof. A. P. HATKAR2
1Student, Dept. of E & TC, SVIT COE, Nasik, India

2Prof, Dept. of E & TC, SVIT COE, Nasik, India

ABSTRACT

The Fast Fourier Transform (FFT) is an efficient algorithm for computing the Discrete

Fourier Transform (DFT) and requires less number of computations than that of

direct evaluation of DFT. It has several applications in signal processing. Because of

the complexity of the processing algorithm of FFT, recently various FFT algorithms

have been proposed to meet real-time processing requirements and to reduce

hardware complexity over the last decades. This is in two directions. One related to

the algorithmic point of view and the other based on ASIC architecture. The last one

was pushed by VLSI technology evolution. In this work, we present three different

architectures of FFT processor to perform 1024 point FFT analysis and also

compared these three architectures with another radix-4 architecture of FFT

processor that is using vedic mathematics. The designs have been simulated and its

FPGA based implementation has been verified successfully using Xilinx ISE 11.1 tool

using VHDL. There are also comparative studies among those architectures. The

objective of this work was to get an area & time efficient architecture that could be

used as a coprocessor with built in all resources necessary for an embedded DSP

application.

Keywords- Fast Fourier Transform, FFT butterfly radix 2 & 4, CORDIC, Sine-Cosine

lookup table, Vedic algorithm, DSP, Urdhava Tiryakbhyam, Xilinx Core.

©KY Publications

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Email:editorijoer@gmail.com http://www.ijoer.in

Vol.4., Issue.3., 2016
(May-June)

498 YOJANA A. JADHAV, Prof. A. P. HATKAR

overall operations. There are two well-known types

of decompositions called Decimation in Time (DIT)

and Decimation In Frequency (DIF) FFT. The only

difference between these two algorithms is that, DIT

starts with bit reverse order input and generates

normal order output. Nevertheless DIF starts with

normal order input and generates bit reverse order

output. Throughout this paper DIF algorithm is used.

The conventional method of Fast Fourier Transform

FFT calculation involves N2complex multiplications

and N(N-1) complex additions. The radix-2 Cooley-

Tukey algorithm performs the same computation

involving (N/2)log2N complex multiplications and

(N)log2N complex additions. But it is more efficient

computationally to employ a radix-4 FFT algorithm

other than radix -2 logarithms.

Note that the input to each N/4-pointDFT is a

linear combination of four signal samples scaled by a

twiddle factor. This procedure is repeated v times,

where v = log4N.

Figure 1: The basic butterfly for radix-4 DIF FFT

algorithm

 The complete butterfly operation for Radix-

4 DIF is shown in figure 1 (a) and in a more compact

form in figure 1(b) [2].

 In this paper, we present radix-4 FFT

processor using different architectures that allows

any size points to transform, fixed point arithmetic,

pipeline structure and parameterized data format.

To improve the performance of such complex

computation Vedic algorithm is adopted. The

benefits of Vedic algorithm for efficient

implementation of complex multiplier have been

largely unexplored. In recent years, several designs

of FFT using Vedic algorithm [3] have been

proposed, but with the limited set of parameters.

 VEDIC mathematics [5] is the ancient Indian

system of mathematics which mainly deals with

Vedic mathematical formulae and their application

to various branches of mathematics. The word

‘Vedic’ is derived from the word ‘Veda’ which means

the store-house of all knowledge. Vedic

mathematics was reconstructed from the ancient

Indian scriptures (Vedas) by Sri BharatiKrisnaTirtha

(1884-1960) after his eight years of research on

Vedas [5].This paper presents a simple digital

multiplier architecture [5] based on the ancient

Vedic mathematics Sutra (formula) called Urdhva-

Tiryakbhyam(Vertically and Cross wise) Sutra which

was traditionally used for decimal system in ancient

India. In [4,6], this Sutra is shown to be a much more

efficient multiplication algorithm as compared to the

conventional counterparts. Urdhva-Tiryakbhyam

Sutra [7] is first applied to the binary number system

and is used to develop digital multiplier architecture.

This Sutra also shows the effectiveness of reducing

the N×N multiplier [7] structure into an efficient 4×4

multiplier structures. This work presents a

systematic design methodology for fast and area

efficient digital multiplier based on Vedic

mathematics [7].

II. RELATED WORK

 FFT processors are designed using four

different architectures. In one of the architecture

Twiddle factors are generated using CORDIC

(Coordinate Rotation Digital Compute) algorithm, in

another one through Sine/Cosine Look up table it is

generated. Xilinx Logicore FFT processor is also used

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Email:editorijoer@gmail.com http://www.ijoer.in

Vol.4., Issue.3., 2016
(May-June)

499 YOJANA A. JADHAV, Prof. A. P. HATKAR

as useful architecture. And a simple digital multiplier

architecture [4] based on the ancient Vedic

mathematics Sutra (formula) called Urdhva

Tiryakbhyam(Vertically and Cross wise) Sutra which

was traditionally used for decimal system in ancient

India. All are designed in FPGA through VHDL.

2.1 Design of FFT Processor using CORDIC algorithm

 The design flow of FFT Processor using

CORDIC is shown in figure 2.The selector block is

nothing but a memory path buffer which compute

respective memory of input samples. When Active

signal is asserted and there are some input data, the

address generator block assigns a memory position

for each input sample. Now when Dual port Ram

gets write Address signal from address generator

block, it saves both memory path along with

respective input samples. The 4 point FFT block has

butterfly unit within it [2].

Figure 2: Architecture of FFT processor using Cordic

 When a start signal is asserted, at the same

time, both to 4 Point FFT and Rotation factor

generator block, the FFT block sends a signal to

CORDIC block for computing necessary twiddle

factors consisting of sine-cosine terms. This block is

controlled by Rotation factor generator block. In

truncate & round block, remapping of memory path

and twiddle factors are held and fed back to FFT

block. Now when address generator block sends

read address signal to DRAM, it sends stored input

data samples along with memory path in FFT block.

Finally this twiddle factors are applied to the output

of the butterflies, and a bit reverse scramble is done.

in the implementation of FFT, it is noticed that

remapping of the memory is necessary. In the

implementation of DIF the remapping is made from

the exit of FFT. However that remapping can be

made in a simple way. For instance, for the FFT

radix-4 DIF, the entrance has to be written in the

addresses of memory 0, 1, 2, 3, 4, 5, 6 and 7. After

having processed a scrambling phases, it has to

write in 0, 4, 2, 6, 1, 5, 3 and 7. That scrambling

follows a much defined order. As 1024 point FFT

processor is designed, the whole module of

architecture is used for 5 times. The formula behind

this is

Stage = log4 (computing point) (3)

2.2 Design of FFT Processor using Sine-Cosine

lookup table algorithm

 The design flow of FFT Processor using Sine-

Cosine look up table is shown in figure 3. The design

flow is quite similar with the processor designed in

figure 3.Only the difference is that sine-cosine look

up table is here used to compute the value of

twiddle factors, which are previously stored in a

RAM [2].

Figure 3: Architecture of FFT processor using Sine-

Cosine look up table.

2.3 Design of FFT Processor using Xilinx Core

In this section Xilinx FFT core is used during

to compute 1024 point FFT transform. The Xilinx FFT

core offers a number of different architectures and

also supports several arithmetic computations. The

architecture of Core FFT is shown in figure 4.During

the implementation of FFT Core many initialization

was made. Such as Radix-4, Burst I/O architecture is

used because in this solution the FFT core uses one

radix-4 butterfly processing engine and has two

processes. One process is loading and/or unloading

the data. The second process is calculating the

transform. Data I/O and processing are not

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Email:editorijoer@gmail.com http://www.ijoer.in

Vol.4., Issue.3., 2016
(May-June)

500 YOJANA A. JADHAV, Prof. A. P. HATKAR

simultaneous. When the FFT is started, the data is

loaded in. After a full frame has been loaded, the

core will compute the FFT. When the computation

has finished, the data can now be unloaded. During

the calculation process, data loading and unloading

cannot take place. The data loading and unloading

processes can be overlapped if the data is unloaded

in digit reversed order [8].

Figure 4: Architecture of Xilinx FFT core

The inputs are provided as 8-bits fixed-point

data type. Coefficients are internally saved in the

core and are also represented as 8-bit fixed-point

data. We apply full-precision unscaled arithmetic,

which takes into account the number of bit growth

at each stage.In order to determine the necessary

bits for correct representing the outputs, the core

applied the formula [8]:

Output data width = input data width + log2

(transform length)+ 1 (4)

This approach will make sure that almost no

data will be lost during the computation.

2.4 Design of FFT Processor using Vedic algorithm.

To perform 64-point FFT a single 4-point

FFT unit is recursively used. This 4-point FFT is

designed using high speed radix-4 algorithm which is

shown in figure 5[4]. Moreover, the performance of

FFT is limited by arithmetic operation such as

complex multiplication. Complex multiplication of

two numbers requires 4 multipliers, 2 adders and 1

subtractor or 3 multiplier and 5 adders. This large

number of multipliers degrades the performance of

FFT [3].

Figure 5: Architecture of 64-point FFT using Vedic

algorithm.

Vedic algorithm is an ancient and well

known technique for arithmetic operation. The

method which is used for multiplications is

‘Urdhvatiryagbhyam’ which means vertical and

crosswise. In this way, this algorithm performs

multiplication of two given numbers in vertical and

crosswise manner until left with only MSB bits. The

proposed FFT utilizes Urdhvatiryagbhyam method of

Vedic algorithm to perform complex twiddle factor

multiplications.

III. RESULT AND DISCUSSION

We have simulated the four mentioned FFT

processor architecture blocks using Xilinx Isim

11.1.In these concerned designs we have used fixed

point format to truncate & round of the values.

3.1 Design Summary of 1024-point FFT processor

Design summary is a report which allows

designer to view the information like targeted

device, the number of errors and warning, device

utilization & design goal. We have implemented our

design in FPGA family Virtex4 (4vfx12ff668speed

grade -12).Also the RTL schematic of the three

mentioned FFT processor blocks are shown. These

RTL schematics are basic logical representation of

the circuit in terms of logic primitives which are

generated when the design become correct in

simulation and synthesis level. Figure 6 & figure 7

shows the RTL schematic &device utilization

summary of 1024 point FFT processor using CORDIC

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Email:editorijoer@gmail.com http://www.ijoer.in

Vol.4., Issue.3., 2016
(May-June)

501 YOJANA A. JADHAV, Prof. A. P. HATKAR

algorithm [2]. Figure 8 shows the device utilization

summary of 1024 point FFT processor using Sine-

Cosine lookup table. Figure 9 shows the device

utilization summary of 1024 point Xilinx Core FFT

processor [2].

Figure 6: Rtl schematic of 1024 point fft in cordic.

Figure 7: Device utilization summary of 1024 point

fft processor using cordic

Figure 8: Device utilization summary of 1024 point

fft processor using Sine-Cosine Look up table

Figure 9: Device utilization summary of 1024 point

Xilinx Core FFT processor

3.2 Design Summary of 64-point FFT processor

using vedic mathematics

The entire architecture was synthesized

and implemented using Xilinx ISE v13.1. The device

used for testing the design was Virtex-5 FPGA. The

functionality was tested by creating test bench

waveform and used in behavioral and post layout

simulations. Fig. 10[4] depicts simulation result of

the proposed design. A signal “inputbusy” is

asserted high as soon as all inputs are stored into

RAM. This signal is used to start the FFT calculation

and to read RAMs, which contain 12 bits wide data

input values. When signal “inputbusy” goes low the

next stage of FFT is enabled. The “invert” signal

specify FFT/IFFT mode. Here, we have used FFT

mode of operation by setting “invert” signal to low

logic. The output values are 14 bits wide with 3 bits

representing the fractional part. A signal

“outdataen” represents valid output. When it is

asserted high, this indicates presence of valid

output. A signal “reset” is active high and used to

reset the system. Table 1[4] shows synthesis result

for proposed design. Of the 7200 available slices on

the Xilinx Virtex-5 FPGA, proposed architecture

consumes around five percent occupying 373 slices.

The number of lookup tables (LUTs) available is

28,800 and the FFT uses four percent available

resources. Dynamic power consumption is only 10

mW. Table III shows performance comparison of

proposed FFT design with other existing designs. The

result shows that the number of LUTs and slices has

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Email:editorijoer@gmail.com http://www.ijoer.in

Vol.4., Issue.3., 2016
(May-June)

502 YOJANA A. JADHAV, Prof. A. P. HATKAR

been reduced significantly in the proposed design.

The operating clock frequency is 380.51 MHz.

Figure 10: Simulation of proposed FFT using Vedic

algorithm.

Table 1: Synthesis result for proposed design

IV CONCLUSION

 This paper presents 1024 point FFT

processor using three different architectures which

are portable among different EDA tools and

technology independent. The whole designs are

implemented in VHDL through Xilinx ISE11.1 The

performance of the designs that is using CORDIC

algorithm, and using Sine-Cosine look up table, have

been compared with the commercial cores provided

by Xilinx . This core was configured with the closet

characteristics to our designs in order to make the

results comparable. The performance of our designs

present better results in terms of physical resources

demanded but the throughput is poorer when

compared with the IP commercial implementations.

Along with these performance results come other

considerations which need to be evaluated to select

the best approach depending on system

requirements like easy implementation, costs and

performance. The generation of a design from an IP

commercial core is as easy as to press a button but

the design has not been controlled because they are

provided as a black box. They offer a variety of

features and functionalities to be configured and

supposedly their implementations are optimized for

a subset of their devices, giving the best

performance for them but they lack portability. Our

FFT designs have been integrated as part of a

Speech Recognition System together with the other

parts of the system such as end point detection,

MFCC feature extraction. In this case the physical

resources performance in order to have full

implementation of the system in the same FPGA is

more important than other criteria used. The

designs are currently under final FPGA realization

and will be reported in the future.

 The 64-point FFT implemented using Vedic

concepts and modified adder was found to have a

good balance between performance and hardware

requirements design had a maximum clock

frequency of 95.2MHz. Also, area minimization is

obtained by devising an efficient Vedic algorithm

based butterfly processing structure, while the novel

twiddle factor multiplier has low power

consumption and hardware complexity. Synthesis

results show that the proposed FFT processor can

provide up to 380.51 MHz speed and slices count is

373. The proposed FFT architecture can also be

altered to support other longer FFT sizes. The main

applications of this proposed FFT are in Digital Signal

Processing, OFDM Systems, Digital Image Processing

and Communication systems.

IV. REFERENCES

[1]. António M. Grilo, Jaime Chen, Manuel Díaz,

Daniel Garrido, and Augusto Casaca, “An

Integrated WSAN and SCADA System for

Monitoring a Critical Infrastructure”, IEEE

Transactions on Industrial Informatics, Vol.

10, No. 3, pp. 1755-1764, August 2014.

[2]. Debalina Ghosh, Depanwita Debnath, Dr.

Amlan Chakrabarti ”FPGA Based

Implementation of FFT Processor Using

Different Architectures”, IJAITI VOLUME 1

NUMBER 1, PP 24-33, Jan/Feb 2012.

[3]. Nisha John, Prof. Sadanandan G.K, “FPGA

Implementation of a Novel Efficient Vedic

FFT/IFFT Processor For OFDM”,

International Journal of Advanced Research

in Electrical, Electronics and

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Email:editorijoer@gmail.com http://www.ijoer.in

Vol.4., Issue.3., 2016
(May-June)

503 YOJANA A. JADHAV, Prof. A. P. HATKAR

Instrumentation Engineering, Vol. 3, Issue

3, September 2014.

[4]. More T.V. ,Panat A.R. “FPGA

implementation of FFT using vedic

algorithm”, Computational intelligene and

Computing Research(ICCIC),pp-1-5 , 2013.

[5]. Harpreet Singh Dhillon, AbhijitMitra, “A

Digital Multiplier Architecture using

UrdhvaTiryakbhyam Sutra of Vedic

Mathematics”,IITG , pp-1-4 , 2010.

[6]. AsmitaHaveliya, “FPGA implementation of a

Vedic convolution algorithm”, International

Journal of Engineering Research and

Applications, Vol. 2, Issue 1, pp.678-

684,Jan-Feb 2012.

[7]. A.Ronisha Prakash, S. Kirubaveni,

“Performance Evaluation of FFT Processor

Using Conventional and Vedic Algorithm”,

IEEE International Conference on Emerging

Trends in Computing, Communication and

Nanotechnology, pp-1-6, 2013.

[8]. http://www.xilinx.com/support/documenta

tion/ip_documentation/xfft/v9_0/pg109-

xfft.pdf

