

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Email:editorijoer@gmail.com http://www.ijoer.in

Vol.4., Issue.4., 2016
(July-August)

1 RAVEENA YADAV

1. INTRODUCTION

 Our approach to Exception handling is

frequently considered as the final task to achieve

when developing programs. However dependable

systems need from their stakeholder to predict all

exceptional situations, because any non-considered

exceptional behavior potentially makes great dam-

ages. . Exception handling is very important specially

when we talk about dependent systems because

many disasters were caused by non handled or non

predicted exceptions. Designers, developers and

software stakeholders should model exception

handling system early when developing a software,

because thinking about software exception on the

last phase of software developing they will be found

under pressure because they must focus on the

normal and the exceptional behavior of the

application in the same time, so any ignored

exception may cause great disaster.

 The objective of this master thesis is to

study the exception handling system from the

requirements specification phase to the final phase

when developing software. This study is based on

extending UML by a profile which allows the

designer and even the developer modeling the

aimed exception handling system on the earliest

phases of developing and then receiving

automatically the traces of this system on the

application code according to the target

programming language.

RESEARCH ARTICLE ISSN: 2321-7758

EXCEPTION HANDLING FROM REQUIREMENT SPECIFICATION TO

IMPLEMENTATION: EXTENDING UML

RAVEENA YADAV

M.Tech., Research paper Scholar, SITM Rewari, Haryana, India

ABSTRACT

In this research paper we study about Exception handling implementation. In our

approach we have made an extension to UML2.0 which makes it possible to

consider exception handling during applications modeling phase of the software

lifecycle. Our approach makes also opportunity to integrate the exception handling

system explicitly in Use case, sequence diagrams allowing developer generating the

last one, the class diagram and the aimed programming language code automatically

with some needed requirements. Those automatic generations adapt the exception

handling system specifically to each phase making some kind of communication

between all phases of software life cycle. We have proceed to build our approach

with defining a new UML2.0 extension profile and we have used model driven

engineering to automatize diagrams and code generation making possible to specify

exception handling and automate its passage from one phase to another along the

software life cycle.

KEYWORDS – Exception Handling , Types of Sterotypes , Handling Mode , Model

Driven Engineering .

©KY Publications

RAVEENA YADAV

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Email:editorijoer@gmail.com http://www.ijoer.in

Vol.4., Issue.4., 2016
(July-August)

2 RAVEENA YADAV

This research aims the following issues:

1) Defining a UML profile in order to support

exception handling system along all the

software life cycle,

2) Generating semi automatically the

sequence diagrams from use case diagram,

3) Generating automatically class diagrams,

4) Generating application code,

5) Moving automatically the exception

handling system when passing from a

diagram to another until arriving to the

generated code,

6) Controlling any changes made on the

exception handling system at any software

life cycle phase and applying them to other

phases,

7) Specifying constraints that are based on

matching the exception handling system to

the programming language features in the

phase of code generation.

The figure below represents a use case diagram

made for an elevator system. We see in this

diagram the use cases stereotyped as handlers

in order to distinguish them from normal use

cases, we see also comments stereotyped as

Exception in order to show the name of the

exception associated with a given use case, we

can see also links stereotyped as interrupt and

continue, others are stereotyped as interrupt

and fail. These two last stereotypes are defined

to express in the use case diagram the model of

exception handling model such as resume and

termination.

Exceptional Use Cases

The URL viewer example (extracted from [UML Superstructure])

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Email:editorijoer@gmail.com http://www.ijoer.in

Vol.4., Issue.4., 2016
(July-August)

3 RAVEENA YADAV

 In the specification of behavior features

made by OMG, exceptions can be associated to

behavior features such as operations which could

raise these exceptions. Even UML offer a small

supporting of exception handling, it does not permit

to model it and to show it explicitly in the most

important diagrams of software’s life cycle such as

use case diagrams, sequence diagrams and class

diagrams.

The proposed UML Profile

 According to a profile in the Unified

Modeling Language (UML) provides a generic

extension mechanism for customizing UML models

for particular domains and platforms. Extension

mechanisms allow refining standard semantics in

strictly additive manner, so that they can not

contradict standard semantics.

 In order, to adapt UML to our approach we

have defined a profile which contains many

stereotypes that extend the UML meta classes to be

able to show explicitly exception handling notations

in the aimed locations. In the following we will

present firstly the whole profile, then we will

describe each stereotype separately.

 Handling an exception may be done in

different modes which can be:

 Termination,

 Resume,

 Retry,

 Propagation,

 Return Value,

 Abort All.

Implementation of the proposed approach

 In order to implement our approach we

were based on model driven engineering to

manipulate all the UML models and diagrams which

we have used and the new extensions which we

have done to UML. To increase the benefits of our

approach, we have proposed a tool that facilitates

software development by automating its most

important phases. This tool looks also after moving

Exception Handling defined in the first phase of

software life cycle to the next phases until arriving

to implementation phase automatically

Model-driven engineering

 According to Model-driven engineering

(MDE) is a software development methodology

which focuses on creating models, or abstractions,

more close to some particular domain concepts

rather than computing (or algorithmic) concepts. It

is meant to increase productivity by maximizing

compatibility between systems, simplifying the

process of design, and promoting communication

between individuals and teams working on the

system.

 A modeling paradigm for MDE is considered

effective if its models make sense from the point of

view of the user and can serve as a basis for

implementing systems. The models are developed

through extensive communication among product

managers, designers, and members of the

development team. As the models approach

completion, they enable the development of

software and systems.

 As it pertains to software development,

model-driven engineering refers to a range of

development approaches that are based on the use

of software modeling as a primary form of

expression. Sometimes models are constructed to a

certain level of detail, and then code is written by

hand in a separate step.

Return Value stereotype As an exception could be

handled by returning a value to the invoker of the

method that raises the exception we have defined

the stereotype Return value in order to allow to the

designer expressing this handling mode and finding

a graphic notation which could be manipulated

easily.

Retry stereotype This stereotype extends the meta

class Message (see Figure.9). It represents the retry

mode of exception handling. It allows the designer

to express graphically that a given handler obliges a

software user to modify some parameters after the

occurrence of an exception and then re-execute the

software.

Conclusion and perspectives We have performed in

this work some extensions to UML in order to give

opportunity to designers to deal with exception

handling in the early phases of software life cycle.

We have done our proposed extensions according to

International Journal of Engineering Research-Online

A Peer Reviewed International Journal
Email:editorijoer@gmail.com http://www.ijoer.in

Vol.4., Issue.4., 2016
(July-August)

4 RAVEENA YADAV

a defined profile that extends UML in order to

introduce exception handling concepts, notations

and terminology in UML diagrams. This feature does

not exist in standard UML. Extensions we have done

have been applied to use case and sequence

diagrams.

 With the extensions we have done, use

case and sequence diagram will be enriched by

exception handling notations, a thing that provides

explicitness of exception handling which was always

considered as a strength piece of code. With our

proposed UML extensions, designers and developers

can manipulate and deal with exception handling

from the early phases of software life cycle and with

some level of explicitness and graphic notations.

References

[1]. Goodenough, J.B.: Exception handling:

Issues and a proposed notation.

Communications of the ACM 18(12),

683{696 (1975).

[2]. Shui, A., Musta_z, S., Kienzle, J.: Exceptional

use cases.In: Briand, L.C., Williams, C. (eds.)

MoDELS 2005. LNCS, vol. 3713, pp.

568{583. Springer, Heidelberg (2005).

[3]. Shui, A., Musta_z, S., Kienzle, J.: Exception-

Aware Requirements Elicitation with Use

Cases. In: Dony, C., Knudsen, J.L.,

Romanovsky, A., Tripathi, A.R. (eds.)

Advanced Topics in Exception Handling

Techniques. LNCS, vol. 4119, pp. 221{242.

Springer, Heidelberg (2006).

[4]. Musta_z, S., Sun, X., Kienzle, J.,

Vangheluwe, H.: Model-Driven Assessment

of Use Cases for Dependable Systems. In:

Nierstrasz, O.Whittle, J., Harel, D., Reggio,

G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp.

558{573. Springer, Heidelberg (2006)

[5]. Zia, M., Musta_z, S., Vangheluwe, H.,

Kienzle, J.: A Modelling and Simulation

Based Process for Dependable Systems

Design. In: Software and Systems Modeling,

pp. 437{451 (April 2007).

[6]. Romanovsky, A.: On Exceptions, Exception

Handling, Requirements and Software

Lifecycle. 2007 IEEE.

[7]. Si Alhir, S: Guide to applying the UML, page

350. Springer, 2002 / SiAlhir, Sinan (2002).

Guide to applying the UML. Springer.

[8]. Oddleif, Halvorsen., Ragnhild Kobro,

Runde., Oystein, Haugen.:Time Exceptions

in Sequence Diagrams MoDELS 2006

Workshops, LNCS 4364, pp. 131{142, 2007.

Springer.

[9]. Nelio, Cacho., Thomas, Cottenier.,

Alessandro, Garcia.: Improving Robustness

of Evolving Exceptional Behaviour in

Executable Models WEH '08, November 14,

Atlanta, Georgia, USA, 2008. ACM.

AUTHOR BIOGRAPHY

Mrs. yadav pursuing her M.Tech in Computer

science And Engineering From SITM Rewari, she has

his bachelor of technology from R.P.S College Of

Engineering M/Garh, Haryana, India in Computer

Science And Engineering. Currently she is pursuing

Research in Exception handling from requirement

specification to implement :Extending UML

