International Journal of Engineering Research-Online A Peer Reviewed International Journal Email:editorijoer@gmail.com <u>http://www.ijoer.in</u>

Vol.4., Issue.4., 2016 (July-August)

RESEARCH ARTICLE

ISSN: 2321-7758

VLSI IMPLEMENTATION OF SERIES INTEGRATOR COMPOSITE FILTERS FOR SIGNAL PROCESSING

MURALI KRISHNA BATHULA

Research scholar, ECE Department, UCEK, JNTU Kakinada

ABSTRACT

The recursive comb filters or Series Integrator Comb filter (SIC) are commonly used as decimators for the sigma delta modulators. This paper presents the VLSI implementation, analysis and design of high speed SIC filters which are based on a low-pass filter. These filters are used in the signal decimation which has the effect on reducing the sampling rate. It is also chosen because its attractive property of both low power and low complexity since it does not required a multiplier. Simulink toolbox available in Matlab software which is used to simulator and Verilog HDL coding help to verify the functionality of the SIC filters. Design procedures and examples are given for SIC filter with emphasis on frequency response, transfer function and register width. The implementation results show using Modified Carry Look-ahead Adder for summation and also apply pipelined filter structure enhanced high speed and make it more compatible for DSP applications.

Keyword: SIC, sigma delta, Decimation, Comb, recursive, truncation, MCLA.

©KY Publications

1. INTRODUCTION

Electronic and communication system for speech processing and radar make use of sigma delta modulator in their operation [1], [2]. Future systems are required to operate with high speed and therefore the sigma delta modulator must be designed accordingly.

Sigma delta ($\Sigma\Delta$) modulator is an over sampled modulation technique which provides high resolution sample output in contrast to the standard Nyquist sampling technique. However at the output, the sampling process is needed in order to bring down the high sampling frequency and obtain high resolution. The SIC filter is a preferred technique for this purpose. In 1981, Eugene Hogenauer [3] invented a new class of economical digital filter for decimation called a Series Integrator Comb filter (SIC) or recursive comb filter. Additionally the SIC filter does not require storage for filter coefficients and multipliers as all coefficients are unity [4]. Furthermore its on-chip SIC filter and its

implementation is efficient because of its regular structure consisting of two basic building blocks, minimum external control and less complicated local timing is required, its change factors is reconfigurable with the addition of a scaling circuit and minimal changes to the filter timing. It is also used to perform filtering of the out of band quantization noise and prevent excess aliasing introduced during sampling rate decreasing. Hence enhanced high speed will be key issue in chip implementation of SIC decimators. This filter consists of three parts which are Integrator, comb and down sampler. SIC filter is considered as recursive filter because of the feedback loop in integrator circuit.

The next section describes the mathematical formulation and block diagram of SIC filters in detail. Enhanced high speed architecture is explained in section 3. Section 4 shows implementation and design result in brief. Finally conclusion is expressed in section 5.

2. An overview of decimation system

The purpose of the SIC filter is twofold; firstly to remove filtering noise which could be aliased back to the base band signals and secondly to convert high sample rate m-bit data stream at the output of the Sigma-delta modulator to n-bit data stream with lower sample rate. This process is also known as decimation which is essentially performing the averaging and a rate reduction functions simultaneously. Figure1 shows the decimation process using SIC filter.

Fig. 1 Digital Decimation Process

The two half band filters [7] are used to reduce remain sampling rate reduction to the Nyquist output rate. First half band filter and second half band filter make the frequency response more flat and sharp similar to ideal filter frequency response. Droop correction filter is allocated to compensate pass band attenuation which is created by SIC filter. The frequency response of overall system will be shown in section 4.

2.1 SIC filters structure

The SIC filter consist of N stages of integrator and comb filter which are connected by a down sampler stage as shown in figure 1 in z domain. The SIC filter has the following transfer function:

$$H(z) = H_I^N(z) \cdot H_C^N(z) = \frac{(1-z)^{-RM-N}}{(1-z^{-1})^N} = \left(\sum_{k=0}^{RM-1} z^{-k}\right)^N \quad (1)$$

Where N is the number of stage, M is the differential delay and R is the decimation factor.

In this paper, N, M and R have been chosen to be 5, 1 and 16 respectively to avoid overflow in each stages.

In order to reduce the data loss, normally the first stage of the SIC filter has maximum number of bit compared to the other stages. Since the integrator stage works at the highest oversampling rate with a large internal word length, decimation ratio and filter order increase which result in more power consumption and speed limitation.

The maximum register growth width can be given as follows:

In other word, G_{max} (MSB) at the filter output, B_{max} is given by:

$B_{\max} = [N \log_2 R + B_{in} - 1]$ (2) 2.2 Truncation for low power & high speed purpose

Truncation means estimating and removing Least Significant Bit (LSB) to reduce the area requirements on chip and power consumption and also increase speed of calculation. Although this estimation and removing introduces additional error, the error can be made small enough to be acceptable for DSP applications. Fig 3 illustrates five stages of the SIC filter when B_{max} is 25 bit so truncation is applied to reduce register width. Mat lab software helps to find word length in integrator and comb section.

3. Speed improvement:

There are two ways of speed improvement in SIC filter which describes as below.

3.1. Pipeline structure: One way to have high speed SIC filter is by implementing the pipeline filter structure. Figure 4 shows pipeline SIC filter structure when truncation is also applied.

Vol.4., Issue.4., 2016 (July-August)

International Journal of Engineering Research-Online A Peer Reviewed International Journal Email:editorijoer@gmail.com <u>http://www.ijoer.in</u>

Fig 3: 5 stages of truncated SIC filter

In the pipelined structure, no additional pipeline registers are used. So that hardware requirement is the same as in the non-pipeline [6]. SIC decimation filter clock rate is determined by the first integrator stage that causes more propagation delay than any other stage due to maximum number of bit. So it is possible to use a higher clock rate for a SIC decimation filter if a pipeline structure is used in the integrator stages, as compared to non-pipelined integrator stages. Clock rate in integrator section is R times higher than in the comb section, so pipeline structure cannot applied for comb section.

FIG:4 SIC filter include integrator and comb cell SIC filters are used in multi-rate processing. An FIR filter is used in a wide array of applications, and can be used in multi-rate processing in conjunction with an interpolator or decimator. SIC filters have low pass frequency characteristics, while FIR filters can have LPF, HPF and BPF frequency characteristics. SIC filters use only addition and subtraction. FIR filters use addition, subtraction, but most FIR filters also require multiplication. SIC filters have a specific frequency roll-off, while low pass FIR filters can have an arbitrarily sharp frequency roll-off. SIC filters are in general much more economical than general FIR filters, but tradeoffs are involved. In cases where only a small amount of interpolation or decimation are needed, FIR filters generally have the advantage. However, when rates change by a factor of 10 or more, achieving a useful FIR filter anti-aliasing stop

band requires many FIR taps. For large rate changes, a SIC has a significant advantage over a FIR filter with respect to architectural and computational efficiency. Additionally, SIC filters can typically be reconfigured for different rates by changing nothing more than the decimation/interpolation section assuming the bit width of the integrators and comb sections meets maximum possible rate change.

Calculation of MCLA is based on above equations. 8-Bit MCLA Adder could be constructed continuing along in the same logic pattern, with the MSB carry-out. Calculation of MCLA is based on above equations. 8-Bit MCLA Adder could be constructed continuing along in the same logic pattern, with the MSB carry-out resulting from OR & AND gates. Additionally, the FIR shape is normalized relative to the SIC's sampling rate.

3.2 Modified Carry look-ahead Adder (MCLA)

The other technique to increase speed is using Modified Carry Look-ahead Adder. The Carry Look-ahead adder (CLA) is the fastest adder which can be used for speeding up purpose but the disadvantage of the CLA adder is that the carry logic is getting quite complicated for more than 4 bits so Modified Carry Look-ahead Adder (MCLA) is introduced to replace as adder. This improve in speed is due to the carry calculation in MCLA. In the ripple carry adder, most significant bit addition has to wait for the carry to ripple through from the least significant bit addition. Therefore the carry of MCLA adder has become a focus of study in speeding up the adder circuits [5]. The 8 bit MCLA structure is shown in Figure 6. Its block diagram consists of 2, 4bit module which is connected and each previous 4 bit calculates carry out for the next carry. The SIC filter in this paper has five MCLA in integrator parts. The maximum number of bit is 25 and it is decreased in next stages. So it truncated respectively to 25, 22, 20, 18 and 16 bit in each adder, left to right Notice that each 4-bit adder provides a group Propagate and Generate Signal, which is used by the MCLA Logic block. The group Propagate P_G and Generate G_G of a 4-bit adder will have the following expressions:

(5)

$$P_G = p_3. p_2. p_1. p_0$$

$$G_G = g_3 + p_3 g_2 + p_3 p_2 g_1 + p_3 p_2 p_1 g_0$$
(5)
(6)

The most important equations to obtain carry of each stage have been defined as below:

$$c_1 = g_0 + (p_0 . c_0) \tag{7}$$

$$c_2 = g_1 + (p_1 g_0) + (p_1 p_0 c_0)$$
(8)

$$c_3 = g_2 + (p_2 \cdot g_1) + (p_2 \cdot p_1 \cdot g_0) + (p_2 \cdot p_1 \cdot p_0 \cdot c_0)$$
(9)

C4=g3+(p3.g2)+(p3.p2.g1)+(p3.p2.p1.g0)+(p3.p2.p1. p0.C0) (10)

The Veilog code has been written to implement summation. The MCLA Verilog code was downloaded to the Xilinx FPGA chip. It was found minimum clock period on FPGA board is 4.389ns (Maximum Frequency is 220 MH

4 Design Results

Figure 6 illustrate the frequency response of the SIC filter when the sampling frequency is 6.144 MHz and the pass band frequency is 348 KHz

R=16, M=1 and N=5

After the sigma delta modulator, the sampling rate must be reduced to 47 KHz which is the Nyquist sampling rate. This is carried out in 4-stages. The first stage involves the reduction of the sampling frequency by the decimation factor of 16. This is done by the SIC filter.

The remaining 3 stages involve the reduction of the sampling frequency by the decimation factor of 2 only which are carried out by the first half band, droop correction and the second half band respectively. The Simulation results for all 4 stages are given in figure 7.

Fig. 7 frequency response of (a) first half band filter (b) droop correction (c) second half band filter (d) overall decimation process , Over sampling ratio=128

Figure 8 shows the measured baseband output spectra before (Figure 8(a)) and after (Figure 8(b)) the decimation functions.

The SIC filter Verilog code was written and simulated by Matlab software. It is found Signal to Noise ratio (SNR) is 141.56 dB in sigma delta modulator output and SNR is increased to 145.35 dB in the decimation stages.

To improve the signal to noise ratio, word length of recursive SIC filter should be increased but the speed of filter calculation is also decreased. Additionally, SIC filters can typically be reconfigured for different rates by changing nothing more than the decimation/interpolation section assuming the bit width of the integrators and comb sections meets certain mathematical criteria based on the maximum possible rate change. Whereas FIR filter can use fixed or floating point math, a SIC filter uses only fixed point math. This is necessary because, as a recursively implemented FIR filter, a SIC filter relies on exact cancellation of poles from the integrator.

5 Conclusions

Recursive SIC filters have been designed and investigated. Enhanced high Speed SIC filters was obtained by the pipeline structure and by using the modified carry look-ahead adder (MCLA). The evaluation indicates that the pipelined SIC filter with MCLA adder is attractive due to high speed when both the decimation ratio and filter order are not high as stated in the Hogenauer Comb filter. Since the first stage of SIC filter require maximum word length and also because of the recursive loop in its structure, thus power is limited by the calculation in integrator stage, so the truncation will reduced the power consumption to obtain high speed operation. **References**

- R.E.Crochiere and L.R. Rabiner, Multirate Digital Signal Processing, Engelwood Cliffs, Prentice Hall, New Jersey, 1983.
- [2]. P.P. Vaidyanathan, Multirate Systems and Filter Banks, Engelwood Cliffs, Prentice Hall, New Jersey, 2009.
- [3]. E.B. Hogenauer, An Economical Class of digital filters for Decimation and interpolation, IEEE Transactions on Acoustics, Speech, and Signal Prosessing, Vol. ASSP-29,pp.155-162, April 1981.
- [4]. Sangil Park, Principles of Sigma-delta Modulation for Analog-to-Digital

Vol.4., Issue.4., 2016 (July-August)

Converters, Motorola Inc, APR8/D Rev.1, 2010.

- [5]. Michael D. Ciletti, Advanced Digital design with the Verilog HDL, Prentice Hall, Department of Electrical and Computer Engineering University of Colorado at Colorado Springs, 2003
- [6]. Decimation and Interpolation Filter", Proceeding of International Conference on Signal Processing Applications and Technology, pp.1743-1748, 1994
- [7]. Brian P. Brandt and Bruce A. Wooley, A Low-Power, Area-Efficient Digital Filter for Decimation and Interpolation, IEEE Journal of Solid-State Circuits, Vol. 29, No.6, June 1994