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1.  INTRODUCTION 

             B. M. Schein [10] considered systems of the 

form (X; 0; \), where X is a set of functions closed 

under the composition “0” of functions (and hence 

(X; 0) is a function semigroup) and the set theoretic 

subtraction “\” (and hence (X; \) is a subtraction 

algebra in the sense of [1]).He proved that every 

subtraction semigroup is isomorphic to a difference 

semigroup of invertible functions. B.Zelinka [11] 

discussed a problem proposed by B. M. Schein 

concerning the structure of multiplication in a 

subtraction semigroup. He solved the problem for 

subtraction algebras of a special type, called the 

atomic subtraction algebras. Y.B.Jun [5] introduced 

the notion of ideals in subtraction algebras and 

discussed characterization of ideals. In [4], Y. B. Jun 

and H.S.Kim established the ideal generated by a 

set, and discussed related results. For basic 

definition one may refer to Pilz[8].  

In this paper, with a new idea, we define 

strong B(m,n) near subtraction semigroup and 

investigate some of their properties. After deriving 

basic properties of a strong B(1,2) near subtraction 

semigroup, We obtain necessary and sufficient 

condition for a s-near subtraction semigroup with 

property () to be a strong B(1,2) near subtraction 

semigroup. It is also shown that, in a strong B(m,n) 

s-near subtraction semigroup with property (), the 

concepts of prime ideal, completely prime ideal, and 

maximal ideal coincide. Unless stated otherwise 

throughout this paper X stands for a zero-symmetric 

near subtraction semigroup. 

2. Preliminaries on Near Subtraction Algebra 

Definition 2.1: A non-empty set X together with 

binary operations “−” and is said to be a subtraction 

algebra if it satisfies the following: 

I. x−(y−x)=x. 

II. x−(x−y)=y−(y−x). 

III. (x−y)−z=(x−z)−y. for every x,y,zX. 

Definition 2.2: Anon-empty set X together with two 

binary operations “” and “•” is said to be a 

subtraction semigroup if it satisfies the following: 

I. (X,−) is a subtraction algebra.  

II. (X,•)is a semigroup. 

III. x(y−z) = xy−xz and (x−y)z = xz−yz,for every 

x,y,zX. 
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Definition 2.3: A non-empty set X together with two 

binary operations “−” and “•” is said to be a near 

subtraction semigroup (right) if it satisfies the 

following: 

I. (X,−) is a subtraction algebra.  

II. (X,•) is a semigroup. 

III. (x−y)z = xz−yz, for every x,y,zX. 

Definition 2.4: A non-empty subset S of a 

subtraction semigroup X is said to be a sub 

algebra of X, if x−x'S when ever x,x'S. 

Note 2.5: Let X be a near subtraction semigroup. 

Given two subsets A and B of X, 

AB={ab/aA,bB}.Also we defined another 

operation “ *”,                        

A*B = {ab−a(a−b)/a,aA,bB}. 

Definition2.6: An element eX is said to be 

idempotent if for each eX, e
2 
= e. 

Definition 2.7: We say that X is an s(s') near 

subtraction semigroup if aXa(aX),                 for all 

aX. 

Definition 2.8: A s-near subtraction semigroup X is 

said to be a  ̅-near subtraction      semigroup if xx 

X, for all xX. 

Definition 2.9: A near subtraction semigroup X is 

said to be sub commutative if aX= Xa, for every 

aX. 

Definition 2.10: A near subtraction semigroup X is 

said to be left-bipotent if Xa=Xa2, for every aX. 

Definition2.11: An element aX is said to be regular 

if for each aX, a=ab a for some bX. 

Definition2.11: A near subtraction semigroup X is 

called strongly regular if for each aX, there exists 

bX such that a = ba
2
.  

Note 2.13: Let X be a zero-symmetric near 

subtraction semigroup and if X is strongly regular, 

then X is regular. 

Definition 2.14:A near subtraction semigroup X is 

said to have property(α) if xX is a subalgebra of 

(X,−), for every xX. 

Definition 2.15: A subalgebra A of (X,−) is called an 

left(right)X-subalgebra of X i f  A(AX) A. 

Note 2.16: Let aX. Then ar(al) is the 

intersection of all right(left) X-subalgebra containing 

a. 

Definition 2.17:A nearsubtraction semigroupX is said 

to be two sided if every left X-subalgebra is right X-

subalgebra and vice versa. 

Note 2.18: Whenever a zero–symmetric 

nearsubtraction semigroup contains non-zero 

nilpotent elements, then X has IFP. 

Definition2.19: Let P be an ideal of X. P is called 

(i) a prime ideal, if for all ideals I, J of X, IJ  P 

 I  P or J  P.  

(ii) acompletely prime ideal, if for any a, b in X, 

abP   either  aP or bP. 

(iii) a primary ideal if abcP and if the product 

of any two of a, b, c is not in P, then the k
th

 

power of the third element is in P. 

(iv) a maximal ideal (minimal ideal) if it is 

maximal (minimal) in the set of  all non-

zero ideals of X. 

3. On Strong B(m,n) near subtraction semigroups 

 In this section, We discuss some properties 

of strong B(1,2) near subtraction semigroup and 

some properties of strong B(1,2)  ̅-near subtraction 

semigroup with property ().  

Definition3.1: We say that a near subtraction 

semigroup X has the property Strong B(m,n), if there 

exist positive integers m, n such that xr
ma = 

axl
n, for all x,a in X. 

Example3.2.1: Let X={0,a,b,1}in which“−”and“•”are 

defined by, 

 
Hence X is a strong B(m,n) near subtraction 

semigroup, for all positive integers m and n. 

Example3.2.2: Let X={0,a,b,c} in which “−” and “•” a 

redefined by, 

X is a B(2,1)near subtraction semigroup. But not a 

http://www.ijoer.in/


 

International Journal of Engineering Research-Online  

A Peer Reviewed International Journal   
Email:editorijoer@gmail.com http://www.ijoer.in 

Vol.4., Issue.4., 2016 
(July-August) 

 

261 V.MAHALAKSHMI, S.MAHARASI, S.JAYALAKSHMI 

 

strong B(2,1)near subtraction semigroup, Since 

cr
2
bbcl. 

Example:3.2.3  Let X={0,a,b,c} in which “−” and 

“•”are defined by, 

X is a strong B(2,3)near subtraction semigroup. But 

not a strong K(2,3)near subtraction semigroup, Since 

b
2
c  cb

3
. 

Proposition 3.3: Every left X-subalgebra of strong 

B(1,2)near subtraction semigroup is also a rightX-

subalgebra. 

Proof: Let A be a left X-subalgebra of X and aA. 

Since X is a strong B(1,2)near subtraction semigroup, 

for xX, axarx = xal
2x<a>l<a>l  A. (i.e.,) 

AX  A. Hence A is a right X-subalgebra of X.  

Proposition3.4:If X is a strong B(2,1) near 

subtraction semigroup, then every right X-

subalgebra is also a left X-subalgebra. 

Proof:  Let A be a right X-subalgebra of X. Then we 

have AX  A. Since X is a strong B(2,1)near 

subtraction semigroup, for aA and xX, xax<a>l= 

<a>2
rx<a>rx<a>r  A. (i.e.,) XA A. Hence A is a 

left X-subalgebra of X. 

Proposition 3.5: If X is a strong B(1,2) and strong 

B(2,1)near subtraction semigroup, then X is two 

sided. 

Proof:  Follows from Propositions 3.3 and 3.4.  

Proposition3.6: Let X be a  ̅-near subtraction 

semigroup with property (). If X is a strong B(1,2) 

near subtraction semigroup, then X has strong IFP. 

Proof: Let I be an ideal of X. Assume that abI for a, 

bX. For a,xX, ax<a>rx = x<a>l
2X<a>l

2<a>l
2= 

XaXa and so ax = x1ax2a. Thus axb = x1ax2abXI  I 

and so axbI. (i.e.,) X has strong IFP.  

Proposition 3.7: Let X be a  ̅-near subtraction 

semigroup with property (). If X is a strong B(1,2) 

near subtraction semigroup, then M1M2=M1M2, 

for any two left X-subalgebra M1and M2 of X. 

Proof: Let xM1M2. Then, x
2
<x>rx= 

x<x>l
2=xXxXxXXxXxXxXx XM1XM2M1M2. 

(i.e.,)M1M2 M1M2.On the other hand, if 

xM1M2 then x = yz, Where yM1 and zM2. 

Now, we have x = yz<y>rz = z<y>l
2X<y>l

2<y>l
2= 

XyXyXyXM1 M1. (i.e.,)M1M2 M1.Similarly 

M1M2 M2 and so M1M2 M1 M2. 

Proposition3.8: Let X be a strong B(1,2)  ̅-near 

subtraction semigroup with property (). Then 

XxXy = Xxy, for all x,y in X. 

Proof: Let x, yX. Taking M1= Xx and M2=Xy in the 

above Proposition 3.7, we get            

XxXy = XxXy. Also Xx = XxX = XxX and this yields 

that Xxy = XxXy. Hence XxXy = Xxy.  

Proposition 3.9: Let X be a strongB(1,2)  ̅-near 

subtraction semigroup with property (). Then X is 

left bi-potent. 

Proof: By the Proposition 3.8, for aX, We have Xa = 

XaXa = Xaa = Xa2.   

(i.e.,) X is left bi-potent.  

Corollary3.10: Let X be a strong B(1,2)  ̅-near 

subtraction semigroup with property (). Then X is 

strongly regular. 

Proof: Trivially follows from the fact that aXa and 

from Proposition 3.9.  

Corollary3.11: Let X be a strongB(1,2)  ̅-near 

subtraction semigroup with property (). Then X is 

regular.     

Proof:Follows from theCorollary 3.10&Note 2.13. 

Theorem3.12:Let X be a strong B(1,2)  ̅-near 

subtraction semigroup with property (α) and let A 

and B be any two left X-subalgebras of X. Then we 

have the following.  

I. √  = A. 

i. AB = AB. 

ii. A2= A. 

II. If A B, then AB = A. 

III. AXB = AB. 

IV. If A is proper, then each element 

of A is a zero divisor. 
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V. A is a completely semi prime ideal 

of X.  

Proof: 

I. For x √ , there exists some positive 

integer k such that xk
A. Since X is a strong 

B(1,2) ̅-near subtraction semigroup with 

property (), by the Corollary 3.10, X is 

strongly regular. If xX, then x = ax2, for 

some aX. This implies x = ax2 = (ax)x = 

a(ax2)x = a2 x3
= 

......… 
=

ak-1 xk 
 XA  A. 

(i.e.,)  x A. Thus √  A. Obviously 

A√ and so A = √ . 
II. Since X is a  ̅-near subtraction semigroup 

with property (), by the Proposition 3.7, 

AB = AB. 

III. Taking B = A in (ii), We get A = A2. 

Suppose that A  B. Then AB = A and(ii) 
gives A = AB. 

IV. AXB  AB and so AXB  AB (by (ii)). 

Also AB = ABA and ABXB. Therefore 

AB  AXB. Hence AB = AXB. 
V. If X has the IFP, the concepts of left zero-

divisors, right zero-divisors and zero-
divisors are equivalent in X. Thus we need 
only to prove that A* consists of only zero-

divisors. Let aA. By (iii), for the principal 

left X-subalgebraXa, Xa = (Xa)2 = XaXa. 

Consequently, for any xX, there exists 

y,zXsuch that xa = yaza. (i.e.,) (x–yaz)a = 0. 
If a is not a zero-divisor, then x–yaz = 0. This 

implies x = yaz XAX  A. (i.e.,) X  A. 
Hence X = A which is a contradiction to the 

hypothesis that A is proper. Thus aA*. 
Hence ‘a’ is a zero-divisor. 

VI. Let a2
A. By the Proposition 3.6, X has 

strong IFP. So axaA.By Corollary 3.11,aA. 
Hence A is completely semi-prime.  

Theorem3.14:Let X be a strong B(1,2)  ̅-near 

subtraction semigroup with property () and let P 
be a proper left X-subalgebra of X . Then the 
following are equivalent. 

I. P is a prime ideal. 
II. P is a completely prime ideal. 

III. P is a primary ideal. 
IV. P is a maximal ideal. 

Proof:   

(i)  (ii)    

By Remark 2.2.23,P is an ideal of X and assume that 

P is a prime ideal. Let abP. By the Proposition 3.8 

and 2.7.22, XaXb = XabXP  P. By the Remark 
2.2.23, Xa and Xb are ideals in X. Since P is prime, 

XaXb P which implies Xa P or Xb P. Suppose 

XaP, then a = axaXaP. Similarly XbP gives that 

b = bybXbP and (ii) follows. 

(ii)  (i) Obvious. 

(ii) (iii) 

By the Proposition 3.8, for all x, yX, Xxy = XxXy. 

As XxXy = XyXx = Xyx, We see that Xxy = Xyx, for 

all x, yX. Using this we get that, for all a, b, cX, 
Xabc = Xbca = Xcab = Xacb = Xbac = Xcba. Suppose 

that abcP and ab P. Since Xis a strong B(1,2)  ̅-

near subtraction semigroup with property (),by the 
Corollary 3.11, X is regular.Therefore abc = 

axabcXabcXPP and therefore (ab)cPcP. 

(as P is a completely prime ideal  and since abP). 

Again suppose abcP and acP. To get the desired 
result we proceed as follows. Now 

acbXacb=XabcXPP. Thus acb = (ac)bP and If ac 

P, then bP as before. Continuing in this way it is 

easy to prove that if abcP and if the product of any 
two of a,b,c does not fall in P, then the third falls in 
P. This proves (iii).  

 (iii) (ii) 

Let abP and a  P. First we observe that xa P, for 

xX satisfying a = axa. For, xaP  a = a(xa)XPP 

which is a contradiction. Also xabXPP. Thus 

xabP and xaP. Since P is a primary ideal of X, 

bk
P, for some positive integer k. Now bk

P  

b√ andby Theorem 3.12√ = P. Thus bP and (ii) 

follows.   
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