Vol.4., Issue.6., 2016 Nov-Dec.

RESEARCH ARTICLE

ISSN: 2321-7758

DESIGN AND ANALYSIS OF A MULTI STOREY BUILDING USING FLOATING COLUMNS

M.MANI KANTA^{*1}, E. GOUTHAMI²

¹PG Student, ²Assistant Professor

Department of Civil Engineering, NVR College of engineering and Technology, Tenali, Andhra

Pradesh

*manikantamasetti@gmail.com

ABSTRACT

At present buildings with floating column is a typical feature in the modern multistory construction in urban India. There are many projects in which floating columns are adopted, especially above the ground floor, where transfer girders are employed, so that more open space is available in the ground floor. As the load path in the floating columns is not continuous, they are more vulnerable to the seismic activity. Sometimes, to meet the requirements these type of aspects cannot be avoided though these are not found to be of safe. Hence, an attempt is taken to study the behavior of a G+15 multi storey building in which some storey's are considered for commercial purpose and remaining storey's are for residential purpose. This paper studies the comparison & seismic analysis of the multistory buildings with floating column and without floating column. Finally, analysis & results in the high rise building such as storey drifts, storey displacement, and Base shear were shown in this study. Design and Analysis was carried out by using Extended Three Dimensional Analysis of Building Systems (ETABS) Software. Keywords: Floating Columns, High-rise buildings, seismic analysis, ETABS

©KY PUBLICATIONS

I. INTRODUCTION

Many urban multi storey buildings today have open first storey as an unavoidable feature. This is primarily being adopted to accommodate parking or reception lobbies in the first storey. The behavior of a building during earthquakes depends critically on its overall shape, size and geometry, in addition to how the earthquake forces are carried to the ground. The earthquake forces developed at different floor levels in a building need to be brought down along the height to the ground by the shortest path. Any deviation or discontinuity in this load transfer path results in poor performance of the building. Buildings with vertical setbacks (like the hotel buildings with a few storey wider than the rest) cause a sudden jump in earthquake forces at the level of discontinuity. Buildings that have fewer columns or walls in a particular storey or with unusually tall storey tend to damage or collapse which is initiated in that storey. Many Buildings with columns that hang or float on beams at an intermediate storey and do not go all the way to the foundation, have discontinuities in the load transfer path. This can be done by Transfer beams. The floating column rests on the transfer beam and this beam transfer the forces to the columns below it. In High-rise buildings this is a common feature now. Articles available online http://www.ijoer.in; editorijoer@gmail.com

II. FLOATING COLUMN

A column is supposed to be a vertical member starting from foundation level and transferring the load to the ground. The term floating column is also a vertical element which (due to architectural design/ site situation) at its lower level (termination Level) rests on a beam which is a horizontal member. The beams in turn transfer the load to other columns below it.

Hanging or Floating Columns

In this century due to huge population the no. of areas in units are decreasing day by day. Few years back the populations were not so vast so they used to stay in Horizontal system (due to large area available per person). But now a day's people preferring Vertical System (high rise building due to shortage of area). Hence, the structures already made with these kinds of discontinuous members are end angered in seismic regions. But those structures cannot be demolished, rather study can be done to strengthen the structure or some remedial features can be suggested.

TRANSFER BEAM

In Frame as load carrying system when column is not allowed to continue downward due to some restriction, problem is resolved by using transfer beam. A transfer beam carries the load of an especially heavy load, typically a column. It is used to transfer the load of a column above to two separate columns below. This is often needed in cases where you need different or larger column spacing. One example where we often see transfer beams is in high rise buildings. These buildings often have retail spaces and parking garages at the lower levels and residential or office units on the upper levels.

HIGH-RISE BUILDINGS

High-rise buildings in general are defined as buildings 35 meters or greater in height which is divided at regular intervals into occupable levels. Undeniably the high-rise buildings are also seen as a wealth-generating mechanism working in an urban economy. High-rise buildings are constructed largely because they can create a lot of real estate out of a fairly small piece of land. Because of the availability of global technology and the growing demand for realestate, highrise buildings are seen as the most fitting solution to any city that is spatially challenged and can't comfortably house its inhabitants.

OBJECTIVE

In this paper a G+15 High-rise building with and without floating column in which some storey's are considered for commercial purpose and remaining storey's are for residential purpose. It should withstand again stall potential loading conditions and fulfills the task for which it is built. It should also ensure that the structure will be designed economically. Safety necessities must be met so that the structure will able to serve its purposewith the minimum cost. The analysis and design of the super structure was done by using ETABS which has been recognized as the industry standard for Building Analysis and Design Software and the comparison and seismic analysis is done by applying all the loads and combinations and to find whether the structure is safe or unsafe with floating column and the analysis and results are shown in this study. MODELING

This paper deals with the comparison of a G+15 High-rise building with normal columns and with floating column. Here a normal G+15 storey building is considered in the first case and in the second case another building in which first 10 storeys are for commercial purpose and from11th storey to roof it is for residential purpose in which we considered floating column. Here the plan configurations of both the building are shown. Upto 10th storey they are same and from 11th storey they differ. By applying the static loads both the structures are safe.

Model - 1

Here a G+15 building with all normal columns which is nothing but a normal building is considered as model 1 with dimensions of beams as 230 mm X 450 mm and column as 600mm X 600mm upto fourth storey and 450mm X 450mm from there. For

International Journal of Engineering Research-Online A Peer Reviewed International Journal Articles available online <u>http://www.ijoer.in</u>; editorijoer@gmail.com

Vol.4., Issue.6., 2016 Nov-Dec.

the overall building the dimensions of beams are same in both X and Y directions.

BEAMS -	230mmX450mm
COLUMNS-	450mmX450mm
	600mmX600mm

Model - 2

Here a G+15 building with floating columns is considered as model 2 with dimensions of beams as 230 mm X 450 mm and column as 600mm X 600mm up to fourth Storey and450mm X 450mm from there. Here up to 10 floors both buildings are same, but from there floating columns are introduced. The structure is not safe with same beam dimensions. To make the structure safe beams and columns are to be increased Due to this transfer beams are considered. A transfer beam carries the load of an especially heavy load, typically a column. It is used to transfer the load of a column above to two separate columns below. This is often needed in cases where you need different or larger column spacing.

BEAMS -	230mmX450mm
	375mmX600mm
COLUMNS-	450mmX450mm
	600mmX600mm

ANALYSIS IN ETABS

The first step in ETABS is to set the grid dimensions. This includes setting number of lines in X direction, Y direction and the spacing between gridlines. Then the storey data is defined which includes setting the number of stories, height of typical and bottom storey. The type of slab is also mentioned in the grid data.

Fig: plan of Model-1 building

Fig: Plan of Model-2 Building

Modeling

After defining the sections and materials a three dimensional model of the structure is. Created using various modeling tools and techniques available in the ETABS. ETABS offers some of most advanced modeling tools such as snaps, replicate, mirror in sert storey, delete storey etc

Vol.4., Issue.6., 2016 Nov-Dec.

Fig: Elevation of Model-1

Fig: Elevation of Model-1

Building parameters

Utility of Building Residential Building Number of Stories Geometry of Building Type of Construction Type Of Walls

Floor to floor height Height of the plinth Grade of Concrete Grade of Steel G+15 Symmetric RCC framed Brick walls External walls 0.20m Internal walls 0.10m 3.0 m 2.0 m above the ground M25 Fe 500

Commercial &

Fig: Elevation of Model-1

RESULTS AND DISCUSSIONS

LATERAL DISPLACEMENT DUE TO EQPX

LATERAL DISPLACEIVIENT DUE TO EQFX				
STOREY	WIT	WITH FC WITH		IOUT FC
15	0.00	0.001865 0.00		1485
12	0.00	0.001822 0.00		1455
9	0.00	0.001429 0.000		0948
6	0.00	1219	0.00	0616
3	0.00	0659	0.00	0356
LATERAL	DISPL	ACEMEN	T DUE	TO EQNX
STOREY	WIT	HOUT FC		WITH FC
15	0.00	1482		0.001876
12	0.00	0.001455		0.001828
9	0.00	0.000948		0.001435
6	0.00	0.000616		0.001223
3	0.00	0.000356		0.000661
LATERAL	DISPL	ACEMEN	T DUE	TO EQPY
STOREY	W	THOUT F	С	WITH FC
15	0.0	0.00129		0.001734
12	0.0	0.001277		0.001692
9	0.0	0.00088		0.001316
6	0.0	0.000559		0.001137
3	0.000322		0.000616	
	•			
LATERAL	LATERAL			WITH FC
DISPLACEM				

LATENAL	WITHOUT FC	WITHFC
DISPLACEMENT		
DUE TO		
EQNYSTOREY		
15	0.001289	0.001734
12	0.001276	0.001692
9	0.000881	0.001316
6	0.000559	0.001137
3	0.000322	0.000616

	GF	0.000278	0.000331	
0	DREY DRIFT WLX			
	STOREY	WITHOUT FC	WITH FC	
	16	0.000203	0.000197	
	15	0.000294	0.000329	
	14	0.000396	0.000483	

STO

	6	0.001967	0.003022
	5	0.002004	0.003044
	4	0.001703	0.002568
	3	0.001661	0.002497
	2	0.001531	0.002295
	1	0.00117	0.001752
	GF	0.000454	0.00068
STO	REY DRIFT E	QPY	
	STOREY	WITHOUT FC	WITH FC
	16	0.000096	0.000119
	15	0.000152	0.000211
	14	0.000215	0.000317
	13	0.000278	0.000424
	12	0.000335	0.000581
	11	0.000359	0.000696
	10	0.000426	0.000738
	9	0.000578	0.000838
	8	0.000685	0.000936
	7	0.000782	0.001029
	6	0.000874	0.00112
	5	0.000963	0.001206
	4	0.000872	0.001073
	3	0.000898	0.001093
	2	0.000873	0.001052
	1	0.0007	0.000837
	GF	0.000278	0.000331

	13	0.000497	0.000638	
	12	0.000581		0.000891
	11	0.000574		0.001041
	10	0.000675	0.000675	
	9	0.000942		0.001231
	8	0.001103		0.001369
	7	0.001242		0.001501
	6	0.001371		0.001628
	5	0.001493		0.001745
	4	0.001348		0.001558
	3	0.001378		0.00158
	2	0.001329		0.001515
	1	0.001056		0.001197
	GF	0.000417		0.000471
STO	REY DRIFT W	/LY		
1	STOREY	WITHOUT FO		WITH FC
	16	0.000203		0.000197
	15	0.000294		0.000329
	14	0.000396		0.000483
	13	0.000497		0.000638
	12	0.000581		0.000891
	11	0.000574		0.001041
	10	0.000675		0.001089
	9	0.000942		0.001231
	8	0.001103		0.001369
	7	0.001242		0.001501
	6	0.001371		0.001628
	5	0.001493		0.001745
	4	0.001348		0.001558
	3	0.001378		0.00158
	2	0.001329		0.001515
	1	0.001056		0.001197
	GF	0.000417		0.000471
	STOREY	WITH FC	WI	THOUT FC
	16	413.64 271		39
	15	871.68 52 1273.12 75		7.89
	14			52.69
	13	1621.68	947	⁷ .88
	12	1921.1	111	.5.56
	11	2175.11	125	57.8
	10	2403.51	147	0.08

Vol.4., Issue.6., 2016

Nov-Dec.

WITHOUT FC

0.000519

0.000725

0.000919

0.001044

0.001092

0.001121

0.001196

0.001597

0.001776

0.001891

STOREY

16

15

14

13

12

11

10

9

8

7

International Journal of Engineering Research-Online

Articles available online http://www.ijoer.in; editorijoer@gmail.com

WITH FC

0.000645

0.001032

0.001419

0.001762

0.002359

0.002461

0.002529

0.002707

0.002847

0.002951

A Peer Reviewed International Journal

International Journal of Engineering Research-Online A Peer Reviewed International Journal

Articles available online http://www.ijoer.in; editorijoer@gmail.com

9	2591.09	1650.86
8	2741.86	1796.18
7	2859.85	1909.9
6	2949.07	1995.88
5	3013.53	2058.01
4	3058.41	2101.26
3	3086.91	2128.73
2	3101.99	2143.27
1	3107.88	2148.94
GF	3108.29	2149.33

CONCLUSION

The study presented in the paper compares the difference between normal building and a building on floating column. The following conclusions were drawn based on the investigation

- a) By the application of lateral loads in X and Y direction at each floor, the lateral displacements of floating column building in X and Y directions are more compared to that of a normal building. So the floating column building is un safe for construction when compared to a normal building
- b) By the calculation of storey drift a teach floor for the buildings it is observed that floating column building will suffer extreme storey drift than normal building. The storey Drift is maximum at 5th and 6th storey levels in both the cases.
- c) The building with floating columns experienced more storey shear than that of the normal building. This is due to the use of more quantity of materials than a normal building. So the floating column building is uneconomical to that of a normal building
- d) The final conclusion is that don't prefer to construct floating column in buildings unless there is a proper purpose and functional requirement for those. If they are to be provided then proper care should be taken while designing the structure

REFERENCES

- [1]. Sukumar Behra and A V Asha & K C Biswal 2012,"Seismic analysis of multis torey building with floating column", Rourkela
- [2]. Prerna Nautiyal, Saleem Akhtarand Geeta Batham 2014, "Seismic Response Evaluation of RC frame building with Floating Column considering different Soil Conditions", Bhopal.

- [3]. Agarwal Pankaj, Shrikhande Manish (2009),
 "Earthquake resistant design of structures",
 PHI learning private limited, NewDelhi.
- [4]. Arlekar Jaswant N, Jain Sudhir K. and Murty C.V.R, (1997), "Seismic Response of RC Frame Buildingswith Soft First Storeys" Proceedings of the CBRI Golden JubileeConference on Natural Hazards in Urban Habitat, 1997, New Delhi.
- [5]. Awkar J. C. and Lui E.M, "Seismic analysis and response of multistory semirigid frames", Journal of Engineering Structures, Volume 21, Issue 5, Page no:425-442,1997.
- [6]. Balsamoa A, Colombo A, Manfredi G, Negro P & Prota P (2005), "Seismic behavior of a full-scale RC frame repaired using CFRP laminates". Engineering Structures 27(2005)769–780.
- [7]. Bardakis V.G., Dritsos S.E. (2007), "Evaluating assumptions for seismic assessment of existing buildings ".Soil Dynamics and Earthquake Engineering 27(2007)223–233.
- [8]. M.Aliand Kyoung Sun Moon, Structural Developments in Tall Buildings: Current Trends and Future Prospects Structures Division, School of Architecture, University of Illinois at Urbana-Champaign, Champaign, IL61820,USA.13June2007.
- [9]. 9. S.S. Patil, Miss. S.A. Ghadge, Prof. C.G. Konapure, Prof. Mrs. C.A. Ghadge Seismic Analysis of High-Rise Building by Response Spectrum Method International JournalOfComputationalEngineeringResearc h(ljceronline.Com)Vol.3Issue.3272, Issn-2250-3005 (Online) March-2013