
International Journal of Engineering Research-Online
A Peer Reviewed International Journal

Articles available online http://www.ijoer.in; editorijoer@gmail.com

Vol.5., Issue.2, 2017

 March-April

99 HARITHA S et al.,

DATA RETRIEVAL FROM DATA GRID WITH BLOOM FILTER IMPLEMENTATION

HARITHA S1, NANDHINI R 2, NANDHINI D 3, SARANYA K4
1,2,3UG Student, Department of Computer Science and Engineering, Alpha College of Engineering,

Chennai, T.N, India
4Assistant Professor, Department of Computer Science and Engineering, Alpha College of

Engineering, Chennai, T.N, India
1harithashyam07@gmail.com, 2 nandhinirsnandhu@gmail.com, 3 nantinideena33@gmail.com

4 sara.kar4@gmail.com

ABSTRACT
In the existing system, however significantly limits the usability of outsourced data

due to the difficulty of searching over the data. It is a time consuming process. In the

proposed system, every cluster comprises a number of nodes. Moreover, there is a

master site that has all the files in the data grid. The storage of each cluster node is

small therefore cannot accommodate all the files in the data grid. So files need to be

brought from other nodes. The requested node checks if the closest node does not

have the file, it searches the next closest node. Based on requested file popularity,

master site replicate the file to cluster node otherwise clear files from the closest

node based on Popular File Replicate Strategy (PFRF). In the modification part of the

paper, we are adding Bloom Filter algorithm in order to capture the data in a short

forms. This system will avoid the whole data storage in all the nodes same time every

cluster node can maintain the Bloom filter index of the entire data stored. This

process is very useful in order to fetch the data quickly.

Key Words— Data Grid , Bloom Filter , Bloom Filter Index, Replication , IPFRF.

©KY PUBLICATIONS

INTRODUCTION

In the Data Grid, the users are distributed

across a large geographical area. These users need

access to a large volume of data which might be in a

far node. This access consumes a large amount of

time of bandwidth. Hence, data replication is

needed to make more than one copy of the same

file at different nodes which helps the user to fetch

the file from its own storage or from the storage of

a close node. As a result, both the consumed time

and bandwidth will be reduced. Dividing the time

into rounds usually leads to a better decision on

which files to replicate because this decision is made

after a large number of file requests and therefore

the users will determine more accurately which files

need to be kept in their storages. In this paper, a

data replication strategy named Improved PFRF

(IPFRF) is proposed. This strategy is based on PFRF

but overcomes its drawbacks. The drawbacks are as

follows:

First, this strategy does not determine to which

cluster node the file is replicated. Therefore, a

number of factors have to be used in that

determination such as number of requests, free

storage space, and node centrality. Second, this

strategy only considers the number of requests to

determine the file popularity (importance).

However, there are other important factors to

determine the popularity of a file such as how many

times it was requested in the last round and the file

RESEARCH ARTICLE ISSN: 2321-7758

mailto:harithashyam07@gmail.com
mailto:nandhinirsnandhu@gmail.com
mailto:nantinideena33@gmail.com
mailto:sara.kar4@gmail.com

International Journal of Engineering Research-Online
A Peer Reviewed International Journal

Articles available online http://www.ijoer.in; editorijoer@gmail.com

Vol.5., Issue.2, 2017

 March-April

100 HARITHA S et al.,

size. Third, in PFRF, the average popularity for a file

is defined as the sum of the popularities of the file

only in the clusters having it divided by how many

clusters having this file. However, some clusters

might not have the file but have a high request rate

for it. Therefore, the average popularity for a file is

better to be defined as the sum of the popularities

of the file in all clusters divided by the number of

clusters in the Data Grid. Hence, also we are

implementing the Bloom Filter index which will be

present along with the Distributed Hash Table. The

contents are retrieved and also using the stemming

algorithm the words are at their base level.

BLOOM FILTER

A bloom filter is a data structure used to

support membership queries.

Properties:

 The amount of space needed to store the

bloom filter is small compared to the

amount of data belonging to the set being

tested.

 The time needed to check whether an

element is a member of a given set is

independent of the number of elements

contained in the set.

 False positives are possible, but their

frequency can be controlled. In practice, it

is a tradeoff between space/time efficiency

and the false positive frequency.

A bloom filter is based on an array of m bits

(b1,b2,…..bm)that are initially set to 0.

There exists k independent hash functions each

returning a value between 1and m are used. In

order to “store” a given element into the bit array,

each hash function must be applied to it and, based

on the return value r of each function (r1, r2, ..., rk),

the bit with the offset r is set to 1. Since there are k

hash functions, upto k bits in the bit array are set to

1.

Fig. 1: Architecture Diagram

Related work

A. Data Replication and the Storage Capacity

of Data Grids: Storage is undoubtedly one of the

main resources in data grids, and planning the

capacity of storage nodes is an important step in any

data-grid design. This paper focuses on storage-

capacity planning for data grids. We have developed

a tool to calculate, for a specific scenario, the

minimum capacity required for each storage node in

a grid, and we have used this tool to show that

different strategies used for data replication may

lead to different storage requirements, affecting the

storage-capacity planning.

B. Analysis of Scheduling and Replica Optimisation

Strategies for Data Grids using OptorSim: Many

current international scientific projects are based on

large scale applications that are both

computationally complex and require the

management of large amounts of distributed data.

Grid computing is fast emerging as the solution to

the problems posed by these applications. To

evaluate the impact of resource optimisation

algorithms, simulation of the Grid environment can

be used to achieve important performance results

before any algorithm is deployed on the Grid. In this

paper, we study the effects of various job scheduling

and data replication strategies and compare them in

a variety of Grid scenarios using several

performance metrics. We use the Grid simulator

OptorSim, and base our simulations on a world-wide

Grid testbed for data intensive high energy physics

Data: x is the object key to insert into the
bloom filter
Function: insert(x)
 for j : 1 . . . k do
 /* Loop all hash functions k */
i ← hj (x); if Bi == 0 then
 /* Bloom filter had zero bit at position i */
Bi ← 1;
end
end

Pseudo code for Bloom filter insertion

International Journal of Engineering Research-Online
A Peer Reviewed International Journal

Articles available online http://www.ijoer.in; editorijoer@gmail.com

Vol.5., Issue.2, 2017

 March-April

101 HARITHA S et al.,

experiments. Our results show that scheduling

algorithms which take into account both the file

access cost of jobs and the workload of computing

resources are the most effective at optimising

computing and storage resources as well as

improving the job throughput. The results also show

that, in most cases, the economy-based

replication strategies which we have develope

improve the Grid performance under changing

network loads.

C. Data Replication Strategies in Grid Environments:

Data Grids provide geographically distributed

resources for large-scale data-intensive applications

that generate large data sets. However, ensuring

efficient and fast access to such huge and widely

distributed data is hindered by the high latencies of

the Internet. To address these problems we

introduce a set of replication management services

and protocols that offer high data availability, low

bandwidth consumption, increased fault tolerance,

and improved scalability of the overall system. The

estimation of costs and gains is based on factors

such as run-time accumulated read/write statistics,

response time, bandwidth, and replica size. To

address scalability, replicas are organized in a

combination of hierarchical and flat topologies that

represent propagation graphs that minimize inter

replica communication costs. Our results prove that

replication improves the performance of the data

access on Data Grids, and that the gain increases

with the size of the datasets used.

D. A Framework for Replication in Data Grid: Data

replication is the creation and maintenance of

multiple copies of the same data. Replication is used

in Data Grid to enhance data availability and fault

tolerance. In this paper, a framework for replication

in the Data Grid is proposed. The framework is

considered an environment that can be used to

evaluate the performance of different replication

strategies. An event-driven simulator written in Java

is used to evaluate the performance of three

replication strategies based on the new proposed

framework. These strategies are No Replication,

Plain Caching, and Fast Spread. The simulation

results show that Plain Caching strategy achieved

the best performance, while No Replication strategy

achieved the worst performance in terms of number

of requests served locally.

NETWORK CONSTRUCTION: Network has many

numbers of node and their details. It maintains the

connection details also. Nodes are interconnected

and exchange data directly with each other nodes.

Nodes are connecting with other nodes in the

network. Network server maintains the node ip

address, port details and status. Node give request

to server and get the needed response from server.

BLOOMCAST: In Unstructured P2P networks, Bloom

Cast is an effective and efficient full text retrieval

scheme. By leveraging a hybrid P2P protocol, Bloom

Cast replicates the items uniformly at random across

the P2P networks. Bloom Cast hybridizes a

lightweight DHT with an unstructured P2P overlay to

support random node sampling and network size

estimation.

BLOOM FILTER: The bloom filter utilizes the hashing

technique for the search of best document. The

bloom filter gets the Query from the node, it

performs multiple hashing in the query and as a

result it converts the query into URLs.

DISTRIBUTION OF BLOOM FILTER AMONG THE

NODES: Once the data are converted into the

URL’s, the url’s are distributed to all other nodes.

Once the node the request for the particular data in

the network, the nodes will check the for the data or

Urls related to the requested data. Once search has

been finished, the best results will display to the

user.

International Journal of Engineering Research-Online
A Peer Reviewed International Journal

Articles available online http://www.ijoer.in; editorijoer@gmail.com

Vol.5., Issue.2, 2017

 March-April

102 HARITHA S et al.,

RANKING AND RETRIEVAL OF DATA: Using the

chord algorithm, the peer node will do forward and

backward search and as a result each document is

provided with the rank and hence according to the

rank given, the best document is identified by the

server and it is given to the user efficiently.

After ranking the documents, the user can choose

the required data that they wanted. By using the

Bloom Filter Concept, an effective and efficient data

retrieval process is achieved in the Unstructured P2P

Networks.

CONCLUSION

In this paper, a round-based data

replication strategy called IPFRF has been

implemented. IPFRF is based on PFRF but

overcomes the shortcomings of PFRF. IPFRF is

superior to PFRF in terms of average file delay per

request, average file bandwidth consumption per

request, and percentage of files found. IPFRF

strategy achieved a reduction in average file delay

per request up to 19.38 and 60.74 percent in

scenarios 1 and 2, respectively, while it achieved a

reduction in average file bandwidth consumption

per request up to 18.00 and 55.84 percent in the

same scenarios. Additionally, IPFRF strategy

achieved an improvement in percentage of files

found up to 46.69 and 217.81 percent in scenarios 1

and 2, respectively.Bloom Filter also simplifies the

retrieval process and the words retrieved are at the

base level (using Stemming algorithm).

REFERENCES

[1] M. Bsoul, “A framework for replication in

data grid,” in Proc. 8
th

 IEEE Int. Conf. Netw.

Sens. Control, Delft, The Netherlands, 2011,

pp. 234–236.

[2] D. G. Cameron, A. P. Millar, C. Nicholson, R.

Carvajal-Schiaffino, K. Stockinger, and F. Zini,

“Analysis of scheduling and replica

optimisation strategies for data grids using

Optorsim,” J. Grid Comput., vol. 2, no. 1, pp.

57–69, 2004.

[3] R. Chang and H. Chang, “A dynamic data

replication strategy using access-weights in

data grids,” J. Supercomput., vol. 45, no. 3,

[4] S. Figueira and T. Trieu, Data Replication and

the Storage Capacity of Data Grids. Berlin,

Germany: Springer-Verlag, 2008, pp. 567–

575.

[5] H. Lamehamedi, B. Szymanski, Z. Shentu, and

E. Deelman, “Data replication strategies in

grid environments,” in Proc. 5th Int. Conf.

Algorithms Architectures Parallel Process.,

2002, pp. 378–383.

[6] K. Ranganathan and I. Foster, “Identifying

dynamic replication strategies for a high-

performance data grid,” in Proc. GRID

’01:Proc. 2nd Int. Workshop Grid Comput..

London, United Kingdom:Springer-Verlag,

2001, pp. 75–86.

[7] M. Tang, B. Lee, C. Yeo, and X. Tang,

“Dynamic replication algorithms for the

multi-tier data grid,” Future Generation

Comput. Syst., vol. 21, no. 5, pp. 775–790,

2005.

[8] S. Park, J. Kim, Y. Ko, and W. Yoon, “Dynamic

data grid replication strategy based on

internet hierarchy,” in Proc. 2nd Int.

Workshop Grid Cooperative Comput., 2003,

pp. 838–846.

[9] Q. Rasool, J. Li, G. Oreku, and E. Munir, “Fair-

share replication in data grid,” Inform.

Technol. J., vol. 7, no. 5, pp. 776–782, 2008.

[10] J. Wu, Y. Lin, and P. Liu, “Optimal replica

placement in hierarchical data grids with

locality assurance,” J. Parallel Distrib.

Comput.,vol. 68, no. 12, pp. 1517–1538,

2008.

