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ABSTRACT 

Miniaturization and integration of different cores onto a single chip are increasing the 

complexity of VLSI chips. To ensure that these chips operate as desired, they have to 

be tested at various phases of their development. Built-In Self-Test (BIST) is one 

technique which allows testing of VLSI chips from wafer-level to system-level. The basic 

idea of BIST is to build test circuitry inside the chip so that it tests itself along with the 

BIST circuitry. The idea of current research is to develop BIST configurations for testing 

memory cores and other regular structure cores in  System-on-Chips (SoCs). BIST 

approach for testing memory cores and other regular structure cores in FPGAs is 

described in this thesis. Another approach which takes advantage of some of the 

architectural capabilities of Atmel SoCs to reduce test time is also described in this 

thesis. 

Keywords: Built-in self test (BIST), SoC, Output response analyzer (ORA), (Advanced 

Virtual Reduced Instruction Set Computer (AVR) 

INTRODUCTION  

 Since the arrival of the first transistor-

based computer, high scale integration became one 

of the main concerns in the hardware design 

techniques. In the early 1970's relatively high levels 

of integration were achieved, but the continuing 

effort to miniaturize and build more complex digital 

circuitry remained one of the goals in leading 

computer construction and chip design [1]. As a 

result, semiconductor integration has progressed 

from Small Scale Integration (SSI) to Very Large Scale 

Integration (VLSI) and now to System Level 

Integration (SLI) or System-on-Chip (SoC) [1]. 

System-on-Chip (SoC) 

 SoC technologies are the consequent 

continuation of the Application Specific Integrated 

Circuit (ASIC) technology, whereas complex 

functions, that previously required heterogeneous 

components to be merged onto a   printed circuit 

board, are now integrated within one single silicon 

IC or chip [2]. As device integration scales grew, the 

enhanced performance of memory, microprocessors 

and logic devices boosted the performance of the 

digital systems they constituted. However, 

performance increases in larger systems were 

hampered by speed limitations associated with the 

long and numerous interconnects between devices 

on the printed circuit board (PCB) and associated 

input/output (I/O) buffers on the chips. Closely 

related system functions must be combined on a 

single chip to eliminate this bottleneck and take full 

advantage of improvements in transistor switching 

speeds and higher integration scales. This is 

precisely the capability that SoC technology 

provides. Rapid advances in semiconductor 

processing technologies allowed the realization of 

complicated designs on the same IC. SoCs can be 

broadly classified into two categories: ASIC-based 

and Configurable or Programmable. While the 

Configurable SoCs (CSoC) can be customized to 
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different applications through embedded 

reconfigurable logic cores, ASIC-based SoCs cannot 

be customized. CSoCs combine the advantages of 

both ASIC-based SoCs and multi-chip board 

development using standard components [1]. The 

major general goal for the development of such 

application-tailored reconfigurable architectures is 

to realize adaptivity vs. power/performance/cost 

trade-offs by migrating functionality from ASICs to 

multi-granularity reconfigurable hardware [3]. 

2. BIST Approach for Free RAMs Using Embedded 

Processor Core 

 The idea of this approach is to generate 

TPG signals from the embedded processor core. As a 

result, this approach is applicable only to the Field 

Programmable System Level Integrated Circuit 

(FPSLIC). The processor is also responsible for 

running the BIST, retrieving the BIST results, 

diagnosing the results and reporting back the 

diagnostic results to a higher controlling device (PC 

for example). The embedded processor in the FPSLIC 

can write into the configuration memory of the 

FPGA. This capability of the processor is used in 

combining the three RAM BIST configurations into 

one configuration. The free RAMs are initially 

configured in dual-port synchronous mode for 

running BIST. Then RAMs and FPGA logic are 

reconfigured to test RAMs in single-port 

synchronous and asynchronous modes. Thus, by 

avoiding two of the three downloads, testing time 

can be reduced significantly (approximately 3 

times). Since only one bit-stream has to be stored 

instead of three, memory requirements are also 

reduced by a factor of three. The TPG is very 

irregular in structure. The rest of the circuit 

containing ORA and RAMs and can be made regular. 

Thus, by making the BIST circuitry inside the FPGA 

regular, the entire BIST logic to be built inside the 

FPGA (RAMs, ORAs and interconnections) can be 

algorithmically configured by the processor. This 

further reduces testing time because no bit-stream 

needs to be downloaded into the FPGA. 

2.1 BIST Architecture: The architecture used is 

similar to the one used in the previous approach 

except that the TPG signals are generated by the 

processor. In dual-port mode, as in the previous 

approach, each ORA compares two adjacent RAMs 

as shown in Figure. In single-port mode, each ORA 

compares data from RAM with expected data 

generated by the processor as shown in Figure 

 
Figure 1: BIST Architecture 

2.2 BIST Architecture for Single-port Modes : The 

BIST architecture for testing free RAMs in single-port 

synchronous and asynchronous modes is similar and 

is as shown in Figure. All RAMs are tested in parallel 

using a single TPG and the ORA compares data from 

RAMs with expected read data results generated by 

the TPG. The design of the single-bit ORA is shown in 

Figure. A tri-state buffer is required in this design as 

the write-data lines are used for both reading and 

writing data in single-port mode. The active high tri-

state buffer in the ORA passes TPG data through 

when writing into the RAM and is tri-stated when 

reading from the RAM which allows the read data to 

be compared with expected data from the TPG. The 

ORA design for single-port mode, though not as 

simple as dual-port design, makes diagnosis of RAMs 

much simpler. Such a design is not used in dual-port 

mode because the generation of expected results by 

the TPG is more complicated as data can be read 

and written at the same time and also routing 

resources are not sufficient to implement such a 

design. 

2.3 BIST Architecture for Dual-port Synchronous 

Mode: The BIST architecture used for testing free 

RAMs in dual-port synchronous mode is shown in 

Figure 3.1(a). All RAMs are tested in parallel using a 

single TPG and the ORA is designed to compare 

outputs of two adjacent RAMs. All RAMs except 

those on the rightmost and leftmost columns are 

compared by two ORAs. Two TPGs are generally 

used for this kind of BIST architecture to make sure 

that TPG is not faulty. But the Finite State Machine 

(FSM) based TPG is too large to replicate and fit 

inside the device. Therefore, it is assumed that the 

logic and routing resources are known to be fault-

free as a result of previously executed BIST for 

programmable logic and routing resources. All the 

ORAs are connected in the form of a scan chain to 
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shift the BIST results out on (Advanced Virtual 

Reduced Instruction Set Computer). 

 
Figure 2: Dual-Port Free RAM BIST Architecture 

 
Figure 3: ORA Design. 

BIST Approach for Free RAMs Using Embedded 

Processor Core The idea of this approach is to 

generate TPG signals from the embedded processor 

core. As a result, this approach is applicable only to 

the FPSLIC. The processor is also responsible for 

running the BIST, retrieving the BIST results, 

diagnosing the results and reporting back the 

diagnostic results to a higher controlling device (PC 

for example). The embedded processor in the FPSLIC 

can write into the configuration memory of the 

FPGA. This capability of the processor is used in 

combining the three RAM BIST configurations into 

one configuration. The free RAMs are initially 

configured in dual-port synchronous mode for 

running BIST. Then RAMs and FPGA logic are 

reconfigured to test RAMs in single-port 

synchronous and asynchronous modes. Thus, by 

avoiding two of the three downloads, testing time 

can be reduced significantly (approximately 3 

times). Since only one bit-stream has to be stored 

instead of three, memory requirements are also 

reduced by a factor of three. The TPG is very 

irregular in structure. The rest of the circuit 

containing ORA and RAMs and can be made regular. 

Thus, by making the BIST circuitry inside the FPGA 

regular, the entire BIST logic to be built inside the 

FPGA (RAMs, ORAs and interconnections) can be 

algorithmically configured by the processor. This 

further reduces testing time because no bit-stream 

needs to be downloaded into the FPGA. 

3. Implementation of BIST Approach 

  Initially free RAMs are configured to be 

tested in dual-port mode. The FPGAWE and FPGARE 

lines are used as clocks for running BIST and for 

retrieving BIST results, respectively. The Data bus is 

used for providing address, data and output enable 

signals to the free RAMs. Since the 8-bit wide data 

bus is not sufficient to provide all required signals. 

On-Chip Diagnostics: AVR is not only capable of 

executing the BIST sequence and retrieving the BIST 

results but also capable of performing diagnostic 

procedures based on the BIST results for the 

identification of faulty RAMs in the FPGA core. The 

AVR, after running diagnostic procedures, identifies 

the location of the faulty RAM in terms of its X 

(column) and Y (row) coordinates. The AVR also 

identifies which bit(s) of the RAM is faulty. Since two 

different BIST architectures are used for testing free 

RAMs, two different diagnostic procedures were 

developed. In single-port test configuration, the 

ORA compare the expected results generated by the 

AVR with the data read from the RAMs Under Test 

(RUTs). Since the ORA incorporate a shift register, 

the BIST results latched in the ORA are retrieved by 

the AVR. Each bit retrieved corresponds to a single-

bit of the 4-bit words of the RAM. The position of 

the ORA in the FPGA array, and the corresponding 

RAM with which it is associated, is determined by 

the ORA's position in the shift register. As a result of 

the ORA comparison of the RUTs output with the 

expected read results produced by the TPG, the 

diagnostic procedure for the single-port RAM modes 

of operation is straight forward. The diagnostic 

procedure looks for ORA failure indications (logic 1s) 

and translates the positions based on the shift 

register order to identify not only which RAMs are 

faulty but also which bits in a given RAM are faulty. 

Faulty ORA can mimic a fault in its corresponding 

RAM. This can be identified when PLBs are tested. In 

dual-port test configuration, since each ORA 

compares two adjacent RAMs a different diagnostic 

approach is used. The Multiple Faulty Cell Locator 

algorithm originally developed for diagnosing faulty 

PLBs in FPGAs is used for diagnosis of dual-port 

RAMs. This procedure is more complicated because 

it is possible that equivalent faults in two RAMs 

being compared by the same ORA will go 

undetected. 
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Figure 4: RAMBIST Implementation from AVR 

 Since all the RAMs except those at the 

leftmost and the rightmost edges of the FPGA are 

being observed by two sets of ORAs and being 

compared to a different RAM in each set of ORAs, it 

is highly improbable for the faulty RAMs to go 

undetected. This approach however loses diagnostic 

resolution for the RAMs at the leftmost and 

rightmost edges of the FPGA The goal was to 

develop BIST configurations for testing free RAMs in 

AT40K series FPGAs and AT94K series SOCs since 

they have embedded AT40K FPGA cores. Initially 

VHDL was used to design the BIST circuitry. This 

approach was useful only for pass/fail indication and 

not for diagnosis to indicate faulty RAMs due to lack 

of support from the synpaper tool for control of 

placement of RAMs relative to their associated 

ORAs. As a result, a combined VHDL-MGL approach 

was used to design the BIST circuitry. Three BIST 

configurations were developed to completely test 

free RAMs. The embedded microcontroller (AVR) in 

AT94K series SoCs can access the embedded FPGA 

core and can write into its configuration memory. 

This feature gave rise to an alternate BIST approach 

for SoCs. The AVR was used to control the BIST i.e., 

to start the BIST, retrieve the results after the BIST 

was completed and present the results to a higher 

controlling device (PC) which performed diagnosis 

based on BIST results. The same three BIST 

configurations were developed to test the free 

RAMs from the AVR. BIST circuitry implemented 

inside the FPGA can be made regular by moving the 

irregular TPG function into the AVR, leaving only the 

ORAs and RAMs in the FPGA. This gave rise to the 

possibility of combining the three BIST 

configurations into one. This was possible because 

regular BIST structure inside the FPGA is similar for 

all three configurations and can now easily be 

reconfigured by the AVR for the next mode of 

testing. Diagnosis was also moved from PC to AVR 

and thus a single configuration was developed 

which tests free RAMs completely and also performs 

diagnosis. A similar approach was used to test the 

embedded data SRAM shared by both AVR and 

FPGA. 

Table 1: BIST and Diagnosis Summary 

function Executi

on 

cycles 

Data 

memory(byte

s) 

Program 

memory(byte

s) 

BIST 100 464 18 

diagnosis 28 332 33 

total 128 796 51 

 Due to limitations imposed by the AVR 

architecture, three configurations were required to 

completely test the data SRAM. The VHDL-only 

approach did not yield any benefits for Atmel 

FPGAs. However, due to better synpaper tool 

support, the VHDL approach seemed worth 

experimenting on Xilinx FPGAs. This approach 

yielded good results on Xilinx FPGAs by controlling 

the placement of RAMs with respect to their 

associated ORAs. A portable VHDL code was thus 

created to test embedded block RAMs and LUT 

RAMs in all families of FPGAs from Xilinx. A total of 9 

BIST configurations were developed for completely 

testing block RAMs in all families of FPGAs from 

Xilinx and another 3 configurations. 

4. Results & Observations  

 It was observed that the architecture of an 

FPGA has a significant impact on BIST development. 

FPGAs using two different architectures were 

considered in this paper. Atmel FPGAs use fine-

grained architecture as opposed to Xilinx FPGAs 

which use coarse-grained architecture. Such a 

problem can occur with coarse-grained FPGAs as 

well when logic or routing resources are used 

almost completely. 

Placement and routing problems did not occur with 

Xilinx FPGAs when testing block RAMs. However, 

LUT RAM testing caused placement and routing 

issues, as almost 100% of logic resources were used. 

Routing issues were solved once placement of RUTs 

and ORAs were defined with a constraint file. TPG 

signals become heavily loaded, particularly when 

testing all the memory components in a large FPGA 
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with a single BIST configuration. All Xilinx FPGAs 

support boundary-scan with facilities for access to 

the FPGA core logic and this enabled usage of 

boundary-scan signals for downloading, running and 

controlling the BIST. This provides a common 

interface for BIST independent of the package being 

tested. Due to lack of access to the FPGA core by the 

boundary scan in Atmel devices, different I/O pins 

had to be used in different packages for running 

BIST. Atmel SoCs support writing into FPGA 

configuration memory but do not support reading of 

configuration memory or reading the contents of 

storage elements in the device. As a result, ORAs 

were required to be configured as a scan chain to 

shift out the results after running BIST. The length of 

the frames varies with the device and typically 

contains a few hundreds bits. Although Xilinx FPGAs 

have read-back capability, the rame-level 

segmentation makes read-back complicated, as post 

processing of results read back is required to extract 

the exact ORA data and, therefore, doesn't reduce 

testing significantly. 

 
Figure 5: Schematic of ORA & RUT 

4.1 Memory With Out Faults: 

When data writing into the memory 

 
 

 

 

4.2 Memory with faults: 

 
5. Conclusions & Future scope 

 BIST configurations for testing memory 

components in commercially available FPGAs and 

SoCs are presented in this paper. Two different 

approaches were followed for developing BIST 

configurations to separately deal with two 

important features: portability of BIST development 

and testing time. BIST configurations developed 

were used to test memory components in AT40K 

series FPGAs and AT94K series SoCs from Atmel and 

Spartan II, Virtex II series FPGAs and SoCs from 

Xilinx. A summary of the paper, observations made 

during BIST development and suggestions for future 

research.  

          To conclude the paper, a few suggestions for 

improvements in the current BIST approach and also 

some areas that can be explored are discussed. 

Comparison with adjacent elements detects all 

possible faults in the RAMs except for the case 

where all elements have equivalent faults but fails 

to uniquely diagnose the results in cases where 

three or more adjacent elements being compared 

have equivalent faults. Comparison with adjacent 

elements was preferred over expected data 

comparison in some cases in this paper as the latter 

approach consumed more logic and routing 

resources and did not fit in some devices. Virtex II 

Pro SoCs have embedded Power PC microprocessors 

similar to the If a slice can be modeled using VHDL in 

such a way that the tool recognizes the model as a 

slice, BIST development can be reduced significantly 

by following the approach used for LUT RAM testing 

and logic BIST can be designed using VHDL alone 

and by controlling the physical placement of logic 

blocks and ORAs. 
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