
International Journal of Engineering Research-Online
A Peer Reviewed International Journal

Articles available online http://www.ijoer.in; editorijoer@gmail.com

Vol.5., Issue.6, 2017
Nov-Dec

151 SAGARSING G. PARDESHI et al.,

LEARNING TO CRAWL WEB FORUMS (FOCUS)

SAGARSING G. PARDESHI1, Prof.VIPUL D. PUNJABI2, GANESH G. GAVIT3

NAYNA M. CHAUDHARI4, DIPALI B. PAWAR5
1sagarpardeshi1694@gmail.com;3gavitg2@gmail.com;4naynachaudhari89@gmail.com;

5dipalipawar821@gmail.com 2Supervisor & Assistant Professor (R.C.P.I.T) (vipulchaddha@gmail.com)

ABSTRACT

Present Forum Crawler Under Supervision (FoCUS), a supervised web-scale forum

crawler. The goal of FoCUS is to crawl relevant forum content from the web with

minimal overhead. Forum threads contain information content that is the target of

forum crawlers. Although forums have different layouts or styles and are powered

by different forum software packages, they always have similar implicit navigation

paths connected by specific URL types to lead users from entry pages to thread

pages. Based on this observation, we reduce the web forum crawling problem to a

URL- type recognition problem. And we show how to learn accurate and effective

regular expression patterns of implicit navigation paths from automatically created

training sets using aggregated results from weak page type classifiers. Robust page

type classifiers can be trained from as few as five annotated forums and applied to a

large set of unseen forums.

1 Introduction

Internet portant services where users can

request and exchange forums also called web

forums are in-formation with others. For example,

the Trip Advisor Travel Board is a place where

people can ask and share travel tips. Due to the

richness of information in forums, researchers are

increasingly interested in mining knowledge from

them. Zhai and Liu , Yang , and Song et al. extracted

structured data from forums. Gao et al. identified

question and answer pairs in forum threads. Zhang

et al. proposed methods to extract and rank product

features for opinion mining from forum posts.

Glance et al. tried to mine business intelligence from

forum data. Zhang et al. proposed algorithms to

extract expertise network in forums [1].

To harvest knowledge from forums, their

content must be downloaded first. However, forum

crawling is not a trivial problem. Generic crawlers,

which adopt a breadth first traversal strategy, are

usually ineffective and inefficient for forum

crawling. This is mainly due to two non-crawler

friendly characteristics of forums: 1. Duplicate links

and uninformative pages. 2. Page flipping links. A

forum typically has many duplicate links that point

to a common page but with different URLs, e.g.,

shortcut links pointing to the latest posts or URLs for

user experience functions such as view by date or

view by title. A forum also has many uninformative

pages such as login control to protect user privacy

or forum software specific FAQs [1][2]. Following

these links, a crawler will crawl many uninformative

pages. Though there are standard-based methods

such as specifying the rel attribute with the no

follow value (i.e., rel no follow), Robots Exclusion

Standard (robots.txt), and Sitemap for forum

operators to instruct web crawlers on how to crawl

a site effectively, we found that over a set of nine

test forums more than 47 percent of the pages

crawled by a breadth first crawler following these

protocols were duplicates or uninformative. This

number is a little higher than the 40 percent that Cai

et al. reported but both show the inefficiency of

generic crawlers. More information about this

RESEARCH ARTICLE ISSN: 2321-7758

International Journal of Engineering Research-Online
A Peer Reviewed International Journal

Articles available online http://www.ijoer.in; editorijoer@gmail.com

Vol.5., Issue.6, 2017
Nov-Dec

152 SAGARSING G. PARDESHI et al.,

testing can be found in. Besides duplicate links and

uninformative pages, a long forum board or thread

is usually divided into multiple pages which are

linked by page flipping links. Generic crawlers

process each page individually and ignore the

relationships between such pages. These

relationships should be pre-served while crawling to

facilitate down- stream tasks such as page wrapping

and content indexing. For ex-ample, multiple pages

belonging to a thread should be concatenated

together in order to extract all the posts in the

thread as well as the reply-relationships between

posts [2].

In addition to the above two challenges,

there is also a problem of entry URL discovery. The

entry URL of a forum points to its homepage, which

is the lowest common ancestor page of all its

threads. Our experiment Evaluation of Starting from

Non-Entry URLs in that a crawler starting from an

entry URL can achieve a much higher performance

than starting from non entry URLs[2].

The major contributions of system as follows:

1. We reduce the forum crawling problem to

a URL type recognition problem and

implement a crawler, FoCUS, to

demonstrate its applicability.

2. We show how to automatically learn

regular ex-pression patterns (ITF regexes)

that recognize the index URL, thread URL,

and page flipping URL using the page

classifiers built from as few as five

annotated forums.

3. We evaluate FoCUS on a large set of 160

unseen forum packages that cover 668,683

forum sites. To the best of our knowledge,

this is the largest evaluation of this type. In

addition, we show that the learned

patterns are effective and the resulting

crawler is efficient.

4. We compare FoCUS with a baseline generic

breadth first crawler, a structure- driven

crawler, and a state of-the-art crawler

iRobot and show that FoCUS out- performs

these crawlers in terms of effectiveness

and coverage[2].

5. We design an effective forum entry URL

discovery method. To ensure high

coverage, we show that a forum crawler

should start crawling forum pages from

forum entry URLs. Our evaluation shows

that an entry link discovery baseline can

achieve only 76 percent recall and

precision; while our method can achieve

over 99 percent recall and precision.

6. We show that, though the proposed

approach is targeted at forum crawling, the

implicit EIT like path also apply to other

User Generated Content (UGC) sites, such

as community QA sites and blog sites.

A recent and more comprehensive work on

forum crawling is iRobot by Cai et al. iRobot aims to

automatically learn a forum crawler with minimum

human intervention by sampling pages, clustering

them, selecting informative clusters via an in

formativeness measure, and ending a traversal path

by a spanning tree algorithm. However, the traversal

path selection procedure requires human

inspection. Follow up work by Wang et al. proposed

an algorithm to address the traversal path selection

problem. They introduced the concept of skeleton

link and page flipping link. Skeleton links are the

most important links supporting the structure of a

forum site. Importance is determined by

informativeness and coverage metrics. Page flipping

links are deter-mined using connectivity metric. By

identifying and only following skeleton links and

page flipping links, they showed that iRobot can

achieve effectiveness and coverage[4].

1.1 Literature Survey

Vidal et al. proposed a method for learning

regular expression patterns of URLs that lead a

crawler from an entry page to target pages. Target

pages were found through comparing DOM trees of

pages with a preselected sample target page. It is

very effective but it only works for the speci c site

from which the sample page is drawn. The same

process has to be repeated every time for a new

site. Therefore, it is not suitable for large-scale

crawling. In contrast, FoCUS learns URL patterns

across multiple sites and automatically ends a

forums entry page given a page from the forum.

Experimental results show that FoCUS is effective at

large-scale forum crawling by leveraging crawling

knowledge learned from a few annotated forum

sites[3].

International Journal of Engineering Research-Online
A Peer Reviewed International Journal

Articles available online http://www.ijoer.in; editorijoer@gmail.com

Vol.5., Issue.6, 2017
Nov-Dec

153 SAGARSING G. PARDESHI et al.,

Guo et al. and Li et al. are similar to our

work. However, Guo et al. did not mention how to

discover and traverse URLs. However, their rules are

too specific and can only be applied to specific

forums powered by the particular software package

in which the heuristics were conceived.

Unfortunately, according to Forum Matrix, there is

hundreds of different forum software packages used

on the Internet. For more information about forum

software packages. In addition, many forums use

their own customized software [4].

2 METHODOLOGY

In this we discussed about our proposed

scheme and how to implement it. We illustrate all

the method in separate module with detailed

description such as synopsis of anticipated scheme,

ITF Regexes Learning, Online Crawling and Entry URL

Discovery.

2.1 Overview Proposed Scheme

We present architectural diagram for our

anticipated scheme. It consists of two major parts:

the learning part and the online crawling part. The

learning part first learns ITF regexes of a given

forum from automatically constructed URL training

examples. The online crawling part then applies

learned ITF regexes to crawl all threads

efficiently[6].

2.2 Page Type

We classified forum pages into page types.

Entry Page

The homepage of a forum, which contains a list of

boards and is also the lowest common ancestor of

all threads.

Index Page

A page of a board in a forum, which usually contains

a table-like structure; each row in it contains

information of a board or a thread.

Thread Page

A page of a thread in a forum that contains a list of

posts with user generated content belonging to the

same discussion.

Other Page

A page that is not an entry page, index page, or

thread page.

2.3 URL Type

There are three types of URL.

Index URL

A URL that is on an entry page or index page and

points to an index page. Its anchor text shows the

title of its destination board.

Thread URL

A URL that is on an index page and points to a

thread page. Its anchor text is the title of its

destination thread.

Page flipping URL

A URL that leads users to another page of the same

board or the same thread. Correctly dealing with

page- flipping URLs enables a crawler to download

all threads in a large board or all posts in a long

thread.

2.4 EIT Path

An entry-index-thread path is a navigation

path from an entry page through a sequence of

index pages (via index URLs and index page-flipping

URLs) to thread pages (via thread URLs and thread

page-flipping URLs).

2.5 ITF Regex

An index-thread-page flipping regex is a

regular expression that can be used to recognize

index, thread, or page-flipping URLs. ITF regex is

what FoCUS aims to learn and applies directly in

online crawling. The learned ITF regexes are site

speci c, and there are four ITF regexes in a site: one

for recognizing index URLs, one for thread URLs, one

for index page-flipping URLs, and one for thread

page-flipping URLs[7]. Gives an example. A perfect

crawler starts from a forum entry URL and only

follows URLs that match ITF regexes to crawl all

forum threads. The paths that it traverses are EIT

paths.

Constructing URL Training Sets

The goal of URL training sets construction is

to automatically construct the sets of highly precise

index URL, thread URL, and page-flipping URL strings

for ITF regexes learning. We use a comparable

process to construct index URL and thread URL

training sets since they have very comparable

properties with the exception of the types of their

destination pages.

Learning ITF Regexes

This sub-module, we have shown how to

construct index URL, thread URL, and page-flipping

URL string training set. We also elucidate how to

learn ITF regexes from these training sets[7]. Vidal

et al. applied URL string generalization. For ex-

International Journal of Engineering Research-Online
A Peer Reviewed International Journal

Articles available online http://www.ijoer.in; editorijoer@gmail.com

Vol.5., Issue.6, 2017
Nov-Dec

154 SAGARSING G. PARDESHI et al.,

ample, given URLs as follows (the top four URLs are

encouraging while the bottom two URLs are

pessimistic).

2.6 Online Crawling

We perform online crawling using a

breadth-first strategy (actually, it is easy to adopt

other strategies). FoCUS first pushes the entry URL

into a URL queue; next it fetches a URL from the URL

queue and finally downloads its page; and then it

pushes the outgoing URLs which are coordinated

with any learned regex into the URL queue. FoCUS

repeats this step until the URL queue is empty or

other conditions are satisfied. FoCUS only needs to

apply the learned ITF regexes on innovative

outgoing URLs in newly downloaded pages to

making the more proficient for online crawling.

FoCUS does not need to group outgoing URLs,

classify pages, recognize page-flipping URLs, or learn

regexes again for that forum[7][8].

 2.7 Online Sitemap Reconstructing and

Traversal Path Selection

The goal of the online part is to mine useful

knowledge based on a few sampled pages, and

guide the following massive crawling. The sampling

quality is the foundation of the whole mining

process. To keep the sampled pages as diverse as

possible, in implementation, we adopt a double-

ended queue and fetch URLs randomly from the

front or end. In this way, the sampling process

actually adopts a combined strategy of breadth-first

and depth first, and can retrieve pages at deep

levels within a few steps[7]. Then, through the

repetitive region-based clustering module, pages

with similar layout are grouped into clusters, as

illustrated with green dash ellipses, according to

which kinds of repetitive patterns they hold. The by-

product of this module is a list of repetitive patterns

occurring in pages from the target forum. After that,

according to their URL formats, pages in each layout

cluster are further grouped into subsets by the URL-

based sub clustering module.

Thus, each subset contains pages with both

uniform page layout and URL format, marked with

red ellipses, and is taken as a vertex in the sitemap

graph. Arcs among various vertices are also rebuilt,

where each arc is characterized by both the URL

pattern and link location of the corresponding links.

The third module is informativeness estimation,

which is in charge of selecting valuable vertices with

informative pages on the sitemap, and throwing

away useless vertices with invalid or duplicate

pages. The valuable vertices are labelled with

shadowed red ellipses. The last module in the online

part is traversal path selection, whose function is to

find out an optimal traversal path to traverse the

selected vertices and step aside discarded ones. The

selected paths are finally shown with dark arrows,

while original arcs are grey arrows [7][8].

3 SMALL CRAWLER CONFIGURATION

Small configuration with three

downloaders is given, which also shows the main

data flows through the system. This configuration is

very similar to the one we used for our crawls,

except that most of the time we used at most

downloaders. A configuration as the one in would

require between and workstations, and would

achieve an estimated peek rate of to HTML pages

per second 4.

Communication in our system is done in

two ways: via sockets for small messages, and via le

system (NFS) for larger data streams. The use of NFS

in particular makes the design very flexible and

allows us to tune system performance by redirecting

and partitioning I/O between disks. While NFS has

its performance limitations, we believe that the

basic approach will scale well for networks of low-

cost workstations and that if necessary it would be

easy to switch to a more optimized le transfer

mechanism. Not shown in Figure 3.3 are the

interactions between crawling application and

storage system, downloaders and web server, and

between crawl manager and a separate web inter-

face for system management[7][8]. The entire

system contains about 5000 lines of C++ and Python

code. Implementation was started in July 2000 as

part of the first authors Senior Project. The first

significant crawls were performed in January 2001,

and development is still continuing. We now give

some more details on each components.

3.1 Crawl Manager

The crawl manager is the central

component of the system, and the first component

that is started up. Afterwards, other components

are started and register with the manager to offer or

request services. The manager is the only

component visible to the other components, with

International Journal of Engineering Research-Online
A Peer Reviewed International Journal

Articles available online http://www.ijoer.in; editorijoer@gmail.com

Vol.5., Issue.6, 2017
Nov-Dec

155 SAGARSING G. PARDESHI et al.,

the exception of the case of a parallelized

application, described further below, where the

different parts of the application have to inter-act.

The manager receives requests for URLs from the

application, where each request has a priority level,

and a pointer to a le containing several hundred or

thousand URLs and located on some disk accessible

via NFS. The manager will enqueue the request, and

will eventually load the corresponding le in order to

prepare for the download, though this is done as

late as possible in order to limit the size of the

internal data structures. In general, the goal of the

manager is to download pages in approximately the

order specified by the application, while reordering

requests as needed to maintain high performance

without putting too much load on any particular

web server[8]. After loading the URLs of a request

les, the manager queries the DNS resolvers for the

IP addresses of the servers, unless a recent address

is already cached. The manager then requests the le

robots.txt in the web servers root directory, unless it

already has a recent copy of the le. This part was

initially implemented as a separate component that

acted as an application issuing requests for robot les

with high priority back to the manager. It is now

incorporated into the man-ager process, and the

robot les are written to a separate directory from

the other data so they can be accessed and parsed

by the manager later. Finally, after parsing the

robots les and removing excluded URLs, the

requested URLs are sent in batches to the down-

loaders, making sure that a certain interval between

requests to the same server is observed. The

manager later notifies the application of the pages

that have been downloaded and are available for

processing[8].

3.2 Downloaders and DNS Resolvers

The downloader component, implemented

in Python, fetches les from the web by opening up

to 1000 connections to different servers, and polling

these connections for arriving data. Data is then

marshaled into les located in a directory determined

by the application and accessible via NFS. Since a

downloader often receives more than a hundred

pages per second, a large number of pages have to

be written out in one disk operation. We note that

the way pages are as-signed to these data les is

unrelated to the structure of the request les sent by

the application to the man-ager. Thus, it is up to the

application to keep track of which of its URL

requests have been completed. The manager can

adjust the speed of a downloader by changing the

number of concurrent connections that are

used[8][9].

The DNS resolver, implemented in C++, is

also fairly simple. It uses the GNU and asynchronous

DNS client library6 to access a DNS server usually

collocated on the same machine. While DNS

resolution used to be a significant bottleneck in

crawler design due to the synchronous nature of

many DNS interfaces, we did not observe any

significant performance impacts on our system

while using the above library. However, DNS

lookups generate a significant number of additional

frames of network traffic, which may restrict

crawling speeds due to limited router capacity[9].

3.3 Crawling Application

As mentioned, the crawling application we

consider in this paper is a breadth-first crawl

starting out at a set of seed URLs, in our case the

URLs of the main pages of several hundred US

Universities, which are initially sent to the crawl

manager. The application then parses each

downloaded page for hyper-links, checks whether

these URLs have already been encountered before,

and if not, sends them to the manager in batches of

a few hundred or thousand. The downloaded les are

then forwarded to a storage manager for

compression and storage in a repository.

The crawling application is implemented in

C++ using STL and the Red-Black tree

implementation in the kazlib library. (The

application consists of two threads each using a

Red-Black tree data structure; this required use of

two different implementations since the current

implementation in STL is not thread-safe).

The data structure and performance

aspects of the application will be discussed. We note

however the following important two points: First,

since each page contains on average about

hyperlinks, the set of en-countered (but not

necessarily downloaded) URLs will grow very quickly

beyond the size of main memory, even after

eliminating duplicates. Thus, after down-loading

million pages, the size of the set of encountered

URLs will be well above 100 million. Second, at this

International Journal of Engineering Research-Online
A Peer Reviewed International Journal

Articles available online http://www.ijoer.in; editorijoer@gmail.com

Vol.5., Issue.6, 2017
Nov-Dec

156 SAGARSING G. PARDESHI et al.,

point, any hyperlink parsed from a newly

downloaded page and sent to the manager will only

be downloaded several days or weeks later. Thus,

there is no reason for the manager to immediately

insert new requests into its dynamic data

structures[10].

3.4 Scaling the System

One of our main objectives was to design a

system whose performance can be scaled up by

adding additional low-cost workstations and using

them to run additional components. Starting from

the configuration, we could simply add additional

downloaders and resolvers to improve performance.

We estimate that a single manager would be fast

enough for about down-loaders, which in turn

would require maybe 2 or 3 DNS resolvers. Beyond

this point, we would have to create a second crawl

manager (and thus essentially a second crawling

system), and the application would have to split its

requests among the two managers. However, the

first bottleneck in the system would arise before

that, in our crawl application, which is currently able

to parse and process up to 400 pages per second on

a typical workstation. While this number could be

improved somewhat by more aggressive

optimizations, eventually it becomes necessary to

partition the application onto several

machines[10][11].

A possible scaled up version of our system

that uses two crawl managers, with 8 downloaders

and 3 DNS resolvers each, and with four application

components. We point out that we have never been

able to test the performance of such a

configuration, which would involve about 23

machines and result in download rates of probably

about 1500 pages per second, way be-yond the

capacity of our T3, or even a dedicated OC3

link[10][11].

4 FOCUS A SUPERVISED FORUM CRAWLER

4.1 Navigation path

Despite differences in layout and style,

forums always have implicit navigation paths leading

users from their entry pages to thread pages. In

general crawling, Vidal et al. learned navigation

patterns leading to target pages (thread pages in our

case). iRobot also adopted a similar idea but applied

page sampling and clustering techniques to find

target pages (Cai et al.). It used informativeness and

coverage metrics to find traversal paths (Wang et

al.). We explicitly defined the EIT path that specifies

what types of links and pages that a crawler should

follow to reach thread pages[11].

5 Conclusions

Implemented FoCUS, a supervised forum

crawler. Reduced the forum crawling problem to a

URL type recognition problem and showed how to

leverage implicit navigation paths of forums, EIT

path, and de-signed methods to learn ITF regexes

explicitly. Experimental results on 160 forum sites

each powered by a different forum software

package confirm that FoCUS can effectively learn

knowledge of EIT path from as few as five annotated

forums. Also showed that FoCUS can effectively

apply learned forum crawling knowledge on 160

unseen forums to automatically collect index URL,

thread URL, and page-flipping URL training sets and

learn ITF regexes from the training sets. These

learned regexes can be applied directly in online

crawling. Training and testing on the basis of the

forum package makes our experiments manage-able

and our results applicable to many forum sites.

Moreover, FoCUS can start from any page of a

forum, while all previous works expected an entry

URL. Our test results on nine unseen forums show

that FoCUS is indeed very effective and efficient and

outperforms the state of the art forum crawler,

Robot.

Acknowledgements

We thank Assistant Professor of R.C.P.

Institute of Technology Prof.Mr.V.D.Punjabi Sir for

his continual expert guidance and encouragement

throughout the project.

References

[1] R. Cai, J.-M. Yang, W. Lai, Y. Wang, and L.

Zhang, iRobot: An Intelligent Crawler for

Web Forums, Proc. 17th Intl Conf. World

Wide Web, pp. 447-456, 2008.

[2] A. Dasgupta, R. Kumar, and A. Sasturkar,

De-Duping URLs via Rewrite Rules, Proc.

14th ACM SIGKDD Intl Conf. Knowledge

Discovery and Data Mining, pp. 186-194,

2008.

[3] C. Gao, L. Wang, C.-Y. Lin, and Y.-I. Song,

Finding Question- Answer Pairs from Online

Forums, Proc. 31st Ann. Intl ACM SIGIR

International Journal of Engineering Research-Online
A Peer Reviewed International Journal

Articles available online http://www.ijoer.in; editorijoer@gmail.com

Vol.5., Issue.6, 2017
Nov-Dec

157 SAGARSING G. PARDESHI et al.,

Conf. Research and Development in

Information Retrieval, pp. 467-474, 2008.

[4] N. Glance, M. Hurst, K. Nigam, M. Siegler,

R. Stockton, and T. Tomokiyo, Deriving

Marketing Intelligence from Online

Discussion, Proc. 11th ACM SIGKDD Intl

Conf. Knowledge Discovery and Data

Mining, pp. 419-428, 2005.

[5] Y. Guo, K. Li, K. Zhang, and G. Zhang, Board

Forum Crawling: A Web Crawling Method

for Web Forum, Proc. IEEE/WIC/ACM Intl

Conf. Web Intelligence, pp. 475-478, 2006.

[6] M. Henzinger, Finding Near-Duplicate Web

Pages: A Large- Scale Evaluation of

Algorithms, Proc. 29th Ann. Intl ACM SIGIR

Conf. Research and Development in

Information Retrieval, pp. 284-291, 2006.

[7] H.S. Koppula, K.P. Leela, A. Agarwal, K.P.

Chitrapura, S. Garg, and A. Sasturkar,

Learning URL Patterns for Webpage De-

Duplication, Proc. Third ACM Conf. Web

Search and Data Mining, pp. 381-390, 2010.

[8] K. Li, X.Q. Cheng, Y. Guo, and K. Zhang,

Crawling Dynamic Web Pages in WWW

Forums, Computer Eng., vol. 33, no. 6, pp.

80-82, 2007.

[9] G.S. Manku, A. Jain, and A.D. Sarma,

Detecting Near-Duplicates for Web

Crawling, Proc. 16th Intl Conf. World Wide

Web, pp. 141- 150, 2007.

[10] U. Schonfeld and N. Shivakumar, Sitemaps:

Above and Beyond the Crawl of Duty, Proc.

18th Intl Conf. World Wide Web, pp. 991-

1000, 2009.

[11] X.Y. Song, J. Liu, Y.B. Cao, and C.-Y. Lin,

Automatic Extraction of Web Data Records

Containing User-Generated Content, Proc.

19th Intl Conf. In-formation and Knowledge

Management, pp. 39-48, 2010.

[12] V.N. Vapnik, The Nature of Statistical

Learning Theory. Springer, 1995.

