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ABSTRACT 

Trajectory data from taxis have become an increasingly important information 

source for various urban transportation analytics and services, such as human flow 

dynamics and location-based services. In this paper, we present a novel approach to 

simultaneously forecast taxi destinations and journey times based on partial 

trajectories collected from the initial stages of trips. Unlike most existing 

approaches, which are based on Markov chain models and neural networks that use 

extensive historical trajectories for training and rule-based methods subject to the 

knowledge and experience of the researchers, we first utilize the nearest haversine 

distance of the starting point and the lowest dynamic time warping cost to identify 

trips with similar patterns. Then, an ensemble machine learning method that 

combines random forest, support vector regression, and gradient boosted regression 

is developed to simultaneously predict trip destinations and their journey times by 

incorporating proper features extracted from real data as input. As validated by 

empirical results based on a benchmark taxi trajectory dataset from Porto, Portugal, 

the proposed method can achieve high accuracy in trip destination and journey time 

prediction. 

Keywords: Taxi trajectory data, trip destination prediction, journey time prediction, 

dynamic time wrapping, ensemble learning 

INTRODUCTION 

Ten thousand taxis are currently registered 

in Hong Kong. The spatiotemporal balance 

between the demand for and supply of taxis is a 

vital part in providing good access to taxi services in 

the city due to regulations in taxi registration. The 

problem of demand–supply matching exists even in 

other megacities, such as Bangkok, where 

approximately 100,000 taxis are in service. On the 

one hand, vacant taxis cruising on roads waste gas 

and time and contribute to traffic. On the other 

hand, passengers suffer from waiting longfor taxis in 

some areas and/or during peak hours. Such an 

imbalance between demand and supply results in 

the long-standing challenge in the taxi industry of 

reducing the number of miles run by taxis without 

fares, that is, cruising miles, while maintaining a 

satisfactory level of service on the passenger side. 

Numerous digital footprints that characterize 

people’s mobility behaviors have become available 

through the emergence of mobile sensing devices, 

such as smartphones and GPS navigators. Taxis are 

now equipped with GPS and communication 

devices, which periodically upload the status of 

vehicles (location, speed, presence of passengers, 

and so on) to the dispatching centers of taxi 

companies and the transportation department. 

These digital footprints provide a promising 

opportunity to understand human mobility patterns 

and devise a solution to the challenge above. 

The current solutions to this problem 

commonly rely on passengers to provide their 

location and time of pickup through several 

communication channels, such as telephone 

RESEARCH ARTICLE ISSN: 2321-7758 

http://www.ijoer.in/


International Journal of Engineering Research-Online  
A Peer Reviewed International Journal   

Articles available online http://www.ijoer.in; editorijoer@gmail.com 

Vol.6., Issue.2, 2018 
March-April  

 

2 H. X. CAI & R. X. ZHONG 
 

 

booking or application-based services. Based on the 

uploaded vehicle status, dispatching centers 

schedule taxis (or other on-demand service vehicles) 

to efficient routes to pick up nearby passengers who 

actively provide their pickup locations in advance, 

thus reducing cruising miles. Several on-demand 

transportation service applications, such as Uber, 

Lyft, Gett, and Grab, are now offering such location-

based services. However, many passengers still hail 

taxis on streets rather than book services in 

advance. In addition to achieving better service 

coverage, taxis should be appropriately pre-

positioned at different areas for receiving dispatch 

orders. Computer science scholars focus on applying 

computational intelligence and statistics to this 

challenge by mining taxi trajectory data and 

categorizing trajectory patterns, such as moving 

together patterns, trajectory clustering, sequential 

patterns, and periodic patterns. Several offline 

prototypes of taxi recommender systems have been 

developed. To maximize the probability of business 

success and reduce energy consumption, [1] 

developed a cost-efficient route recommender 

system, which can recommend a sequence of pickup 

locations or potential parking positions to taxi 

drivers; these recommendations are achieved by 

learning from the trajectory data transmitted by 

successful drivers. The T-Finder recommender 

system developed by [2] provides taxi drivers with a 

small set of locations and the routes to these 

locations, thereby allowing the drivers to pick 

passengers up quickly and maximize the profit of the 

next trip. Mean while, T-Finder helps passengers by 

suggesting some locations within reasonable 

walking distances where they can easily find vacant 

taxis. Reference [3] proposed T-Share, which 

extends T-Finder,to large-scale dynamic taxi-sharing 

systems that accept passengers’ real-time ride 

requests from apps and dispatches taxis to pick 

passengers up via ridesharing. Knowledge of taxi 

service mobility patterns (e.g., transporting a 

passenger from pickup to drop-off locations) and 

journey time information are essential to these taxi 

recommender systems. In these recommender 

systems and other state-of-the-practice on-demand 

transportation service vehicle dispatching systems, 

an important but missing component is the 

simultaneous trip destination and journey time 

prediction of vehicles for identifying vacant vehicles 

(in both spatial and temporal domains) in the short-

term near future and enabling the system to adapt 

to dynamic traffic conditions. 

Cruising for parking creates a mobile queue 

of cars, which is a considerable source of 

congestion. For instance, 30% of moving vehicles are 

searching for parking with an average searching 

time of 12min during peak hours in the area around 

Harvard square in Massachusetts [4]. Although 

state-of-the-practice parking guidance systems 

increase the probability of finding vacant parking 

spaces, drivers may not find vacant parking spots by 

following the information provided by such systems. 

Several drivers will possibly go toward the same 

vacant parking spots, and they may all be occupied 

by the time the drivers arrive. This situation forces 

drivers to replan and compete for other spots, thus 

causing another traffic congestion in areas where 

parking spaces are monitored. Simultaneous trip 

destination and journey time prediction by partial 

trajectory is also important for developing adaptive 

cruising-for-parking systems in that a system 

predicts the most possible destinations (proximity to 

destination) and sends the driver a parking 

reservation (located in the neighborhood of the 

destinations to minimize total expected journey 

time or cost) and route guidance. Agent-based 

cruising-for-parking simulation platforms have been 

developed to study the spatiotemporal distribution 

of parking availability in congested city centers with 

dynamic characteristics [5]. Reference [6] proposed 

a resource allocation- and reservation-based smart 

parking system that assigns and reserves an optimal 

parking space based on proximity to destination and 

parking cost. Reference [7] suggested an equilibrium 

formulation for incorporating parking search in 

which the search processes employed by drivers are 

designed to minimize total expected journey time 

(or cost). 

Destination prediction by observing the 

beginning of a trajectory is also important for many 

emerging location-based applications, such as 

sightseeing place recommendations, targeted 

advertising, automatic destination settings in 

navigation systems, and early warnings of road 

congestion. This issue is common in various areas or 

fields, such as traffic network origin–destination 
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estimation from limited trajectory trace[8], animal 

migrations [9], robotic video frames [10], human 

motion prediction [11], crossroad vehicles [12], and 

GPS data for studying activity patterns in urban 

commercial complexes [13]. The rest of this paper is 

organized as follows. Section 2 states the problem 

and presents a brief review of related works in this 

area. Section 3 presents the proposed simultaneous 

destination and journey time prediction framework. 

Section 4 discusses the empirical study conducted 

using a benchmark taxi trajectory dataset. Sections 

5 and 6 present the results of the proposed method 

and the corresponding discussion, respectively. 

Finally, Section 7 concludes the paper. 

Problem statement and related work 

A set of vehicle location data, which 

consists of locations 𝑝 𝑡 ∈ 𝑅2  obtained from 

various observation times t  of ongoing taxi tripsis 

shown in Fig. 1. The blue points are the trip origins 

(or starting points), the green points are the 

intermediate observations during the trips, and the 

red points are the latest observations of each trip. 

This study mainly aims to develop an efficient 

framework for simultaneously and accurately 

forecasting the destination and the associated 

journey time by observing the initial trajectory of 

each trip. 

The destination prediction problem has 

been significantly studied. Meanwhile, the literature 

on simultaneously predicting trip destination and 

the associated journey time in both computer 

science and transportation research communities is 

limited. Destination prediction can be intuitively 

accessed by comparing known partial trajectories 

with the current location of trajectories. If an 

ongoing trip (hereafter called query trajectory) 

matches part of a popular route derived from 

historical trajectories, the destination of the popular 

route is likely to be the destination of the ongoing 

trip. [14] introduced a neural network (NN) on a 

feature vector composed of coordinates of the 

beginnings of trajectories and diverse context 

information, such as departure time, driver ID, and 

client information. Their NN algorithm won the 2015 

ECML/PKDD discovery challenge 

(http://www.geolink.pt/ecmlpkdd2015-challenge/) 

for the destination prediction problem. However, 

learning performance depends heavily on the 

professional tuning of the hyper-parameters of the 

NN. This exposes NN-based approaches to the 

interpretability problem and renders them unusable 

in understanding the characteristics of the dataset. 

Moreover, the training process of the NN is site-

sensitive. 

Several methods have been proposed 

based on the Bayesian inference [15, 16].Apart from 

historical trajectories, [17] incorporated additional 

information, such as journey time (assuming drivers 

tend to choose efficient routes in terms of journey 

time), trip length, accident reports, and driving 

habits, into the Bayesian inference to compute the 

probabilities of predicted destinations. These 

studies aimed to enhance prediction accuracy by 

using a considerable amount of external 

information. However, the required external 

information, such as journey time (to be predicted 

as well) and driving habits are not always available. 

The performance deteriorates without sufficient 

external information. Reference [18] applied a 

hidden Markov model for destination prediction by 

observing driver habits through the analysis of GPS 

data and other information, such as time of day, day 

of week, and link duration. Reference [19] used GPS 

data to extract clustered destinations, then applied 

the hidden Markov model to predict the destination 

based on the observed partial trajectory. These 

prediction methods are based on the habits of one 

or a group of specific individuals based on their 

historical trip records. Thus, these methods require 

knowing the identities of drivers. Moreover, the 

destination can be accurately predicted only when 

at least one historical record matches the query 

trajectory [20]. Reference [21] used non-periodic 

position logs recorded by smartphones to identify 

user behavior patterns to support destination 

prediction. Reference [22] proposed the sub-

trajectory synthesis algorithm for destination 

prediction; it addresses the problem of data sparsity 

while avoiding privacy issues. Reference [23] 

proposed a nearest-neighbor trajectory method that 

utilizes distance measures to identify historical 

trajectories that are similar to the query trajectory 

and uses the identified trajectory to predict the 

destination. 
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Fig. 1 Trajectory data 

Simultaneous trip destination and journey time 

prediction 

A. Architecture 

Fig. 2 depicts the architecture of the proposed 

simultaneous trip destination and journey time 

prediction framework. The basic idea is similarity 

learning, that is, trajectories with similar route 

patterns to those of the query trajectory are 

identified. The similar historical trajectories are then 

used to predict the possible movements of target 

vehicles. We start the trip matching by identifying 

the trips that start closest to the origin of the query 

trajectory based on the haversine distance. Second, 

vehicle trajectories are regarded as a time series by 

applying dynamic time warping (DTW) to search for 

trips with similar patterns. Third, factors that 

influence trip destination and journey time are 

identified. Finally, ensemble machine learning 

models are utilized to predict trip destinations and 

journey times. 

 
Fig.2 Architecture of simultaneous trip 

destination and journey time prediction 

 

 

B. Closest starting points  

Trips with close starting points are likely to have 

similar travel patterns than those with 

geographically distant starting points [24]. To this 

end, we first define a metric to measure the 

distance between points on earth. We use the 

haversine distance to measures distances between 

two points on earth based on their latitude and 

longitude.   

Definition 3.1  The haversine distance 

between two locations 
2

1 2,p p R  on earth is 

defined as 

1 2( , ) = 2 arctan
1

a
d p p r

a

 
     

 (1) 

2 22 1 2 1
1 2= ( ) cos( )cos( ) ( )sin sin

2 2
a

   
 

 


 
(2) 

where 1 1( , )   and 2 2( , )   are the longitude and 

latitude of 1 2,p p , respectively, and = 6371r  km 

is the radius of the earth.  

C. Dynamic time wrapping for measuring the 
distance between two trajectories and similarity 
learning  

We want to identify several trips at a given 

trajectory with similar travel patterns to those of the 

training sample trajectories with the closest starting 

points to forecast the destination of trips. The 

divergence between two trips (or trajectories) can 

be measured by several existing methods, including 

synchronous euclidean distance [25], closest-pair 

distance, sum-of-pairs distance [26], and 

symmetrized segment–pathdistance [27]. The trips 

are illustrated as time series by adopting the DTW 

distance to quantify the similarity for two reasons. 

First, DTW computes the best alignment between 

two trajectories, which is robust to outliers. 

Reference [28] Using DTW for driving event 

recognition shows high accuracy even with a limited 

training dataset. Second, GPS trajectories are time-

dependent sequences with different lengths. DTW 

has been successfully applied to automatically cope 

with such time deformations[29]. DTW is a widely 

applied algorithm that can measure the divergence 

between two time series with different phases and 

lengths. This algorithm computes the optimal 

alignment between two time series under a certain 
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metric by finding pairs of time indices to align, that 

is,the optimal warp path. Two given time series can 

be warped nonlinearly with the obtained warp path 

in the time domain, and their similarity can be 

measured easily. 

Given two univariate time series 

( ), =1,2, ,x i i m  and ( ), =1,2, ,y j j n ,the 

optimal warp path W  can be expressed as 

( )
= , = 1,2, ,

( )

y

y

w k
W k p

w k

 
  
 

  (3) 

where ( )xw k  represents an index from the time 

series ( )x i , ( )yw k  represents an index from the 

time series ( )y j , and p  is the length of the warp 

path W . 
x ( )

( )y

w k

w k

 
 
 

 indicates that the ( )xw k th 

element in ( )x i  corresponds to the ( )yw k th 

element in ( )y j . 

Several constraints should be satisfied 

when constructing the warp path W . For example, 

all indices of both time series should be considered 

in the warp path W . With this constraint, the warp 

path W  should start at (1) = (1,1)W  and end at 

( ) = ( , )W p m n . Warp path W  should be 

continuous such that adjacent points ( )W k  and 

( 1)W k   satisfy ( 1) ( ) 1x xw k w k    and 

( 1) ( ) 1y yw k w k   , respectively. Warp path 

W  should be monotonically increasing such that 

adjacent points ( )W k  and ( 1)W k   satisfy 

( 1) ( ) 0x xw k w k    and 

( 1) ( ) 0y yw k w k   , respectively. Meanwhile, 

the length of W  satisfies 

[ ( , ), ]p max m n m n  . With the constructed 

optimal warp path W , the given time series ( )x i  

and ( )y j  can be extended to two new time series 

( )x k  and ( )y k , defined as 

   ( ) = ( ) , ( ) = ( ) , = 1,2,...,x yx k x w k y k y w k k p , 

respectively. The warp distance between time series 

( )x i  and ( )y j  can be represented by a certain 

distance measure, such as the haversine distance, 

between these two extended time series ( )x k  and 

( )y k and expressed as

    =1
( , ) = ( , ) = ( ) , ( ) .

p

x yk
DTW x y D x y D x w k y w k
DTW is optained through the following steps. First, 

distance matrix C is built; this matrix consists of 

M N  elements, andeach element represents the 

distance between two points in the time series. 

Second, the accumulated cost distance matrix 

( , )D i j  is constructed, and each element ( , )D i j  

represents the minimum warp distance between the 

sub-time series x  of length i  and the sub-time 

series y  of length j . The corresponding path is 

denoted as ijW . Then, warp path ijW  includes 
i

j

 
 
 

 

and either 
i-1

j

 
 
 

, 
1

i

j

 
 

 
, or 

1

1

i

j

 
 

 
, which can 

construct the relationship between ( , )D i j  and 

( 1, 1)D i j  , ( 1, )D i j , or ( , 1)D i j 

because ( , )D i j  represents the minimum 

cumulative distance from the initial point to i

j

 
 
 

 in 

the cost distance, which is defined as   

( , ) = ( ( ), ( ))

( 1, 1),
min

( 1, ), ( , 1)

D i j C x i y j

D i j

D i j D i j

  
  

  

 
(4) 

where (1,1) = ( (1), (1))D C x y . After computing 

all the elements in the cost distance matrix ( , )D i j

, the optimal warping path can be obtained via a 

dynamic programming algorithm 

 ( , ) = min ( , )DTW x y D m n . 

Given a test trip trajectory A , supposing 

M  is the number of location samples of A, then the 

trajectory is denoted as a time series:

1 1 2 2
= ([ , ],[ , ], ,[ , ], ,[ , ])A A A A A A A A

i i M M
A          . 

Supposing trip B  is one of the trips in the historical 

data with the closest starting points to trip A , then 

the length of B  is N , which is denoted as 

1 1 2 2
= ([ , ],[ , ], ,[ , ], ,

[ , ])

B B B B B B
i i

B B
N N

B      

 

K K
. As 
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mentioned before, 
X

i
  and 

X
i

  represent the 

longitude and latitude of the i th location sample in 

A  or B . A pair of trajectories ( A , B ) is then 

compared based on the DTW algorithm as 

previously discussed. First, the cost distance matrix 

is calculated, where ( , )C i j is equal to the 

haversine distance between [ , ]A A
i i

   and 

[ , ]B B
j j

  . Then, the optimal warping path and 

dynamic time wrapping distance are obtained by a 

dynamic programming approach.  

D. Feature extraction 
Given n  trips with the lowest warping path 

cost, we can extract several valuable features for 

destination and journey time predictions. As 

summarized in Table 1, the spatial trajectory of a 

taxi can provide some hints on its destination. We 

extract some features from the trajectory, including 

the first and the last GPS locations and the distance 

between adjacent points. The destination is likely in 

the extension direction of some of the last observed 

points, so we choose the heading as our feature. 

The heading between two points is calculated as 

follows:   

2 1 2

1 2

1 2 2 1

= 2(sin( )*cos( ),

cos( )*sin( )

sin( )*cos( )*cos( ))

atan   

 

   



 

 (5) 

where   is the latitude,   is the longitude, and 

atan2 is a common function found in almost all 

programming languages.   should be converted to 

radians before it is used. Meanwhile, the destination 

of a taxi may be predicted given the taxi ID based on 

the regularity of pre-hired services. Additional 

information includes the day of the week, the hour 

of the day, and exogenous conditions, such as 

weather or sporting events. Such events can cause a 

part of the network to behave differently from a 

typical day. Thus, another feature is whether the 

data were captured on a holiday. Table 1 shows the 

selected fetures. We then calculate the themfor 

each trajectory to generate the feature vectors, 

which  serve as input to the machine learning model 

that predicts the destination and journey time. 

 

Table  1: List of features 

Feature Explanation Example 

f-lon First point 
longitude 

–8.600157 

f-lat First point 
latitude 

41.182722 

l-lon Last point 
longitude 

–8.613612 

l-lat Last point 
latitude 

41.183154 

distance 
Haversine 
distance of 
adjacent points 

105.9032 

heading 
Heading of 
adjacent points 

1.96679 

taxi id 
Unique 
identifier for 
the taxi driver 
that performed 
each trip 

20000542 

wday Day of week 5 

hour Hour of day 13 

holiday Holiday or not 1 

E. Prediction models 
The taxi destination and the corresponding 

journey time are predicted using the similarity and 

the identified significant features by three 

regression models:support vector regression (SVR), 

random forest (RF), and gradient boosted regression 

(GBM). 

1) Support vector regression: 
A set of training dataset is provided as 

1

1 1{( , ), , ( , )}, ,n

l l i iz z z v v v R R , 

where iv  represents the feature vector of 

trajectory, iz  is the corresponding label (journey 

time or destination), and n  is the dimension of the 

feature vector. The input–output relationship 

function can be represented by  

= ( ) = ( )T

i iz f b  iv v , 

where ( )i v  is the non-linear mapping from input 

feature iv  to a high-dimensional space,   is the 

vector of weightings, and b  is a bias term. To train 

the SVR, we optimize an  -insensitive loss function 

with a generalized regression error as follows:  

* *

*, , , =1 =1

*

*

1
( , , ) =min

2

. . ( ) ,

( ) ,

, 0, = 1, , .

l l
T

i i
b i i

T

i i i

T

i i i

i i

J K K

s t b z

z b

i l

  

      

   

   

 

 

   

   



 

v

v



 
(6) 

where 
*,i i   are non-negative slack variables, ,K   

are the positive regularization parameter and the 

insensitive loss function parameter, respectively. 
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Equation (6) is generally solved through its 

dual problem:  

* *

* * *,

=1 =1

*

*

1
( ) ( )

2
min

( ) ( )

. . ( ) = 0,

0 , , = 1, ,

T

l l

i i i i i

i i

T

i i

Q

z

s t

K i l

 

   

    

 

 

 

   



 

 

e

L

 

(7) 

where = ( , ) ( ) ( )T

ij i j i jQ  v v v vK . Then, 

the estimated values for the SVR model can be 

rewritten as  

*

=1

( ) = ( ) ( , )
l

i i i

i

f b   v v vK  (8) 

where ( , )iv vK  is defined as the kernel function 

that satisfiesthe Mercer theorem, and
*,i i  , and 

support vector iv  are the parameters to be 

estimated. 

Generally, the kernel function can be 

chosen as linear, polynomial, sigmoid, and radial 

basis functions (RBF). We adopt the RBF because it 

has fewer parameters and lower complexitythan the 

other functions, 

 2( , ) = exp ,  > 0i j i j  v v v vK P P . 

Equation (6) shows that K  controls the trade-off 

between the penalty and the margin. If K  is small, 

the penalty to the samples that exceed the  range 

is inadequate, and the regression model is 

underfitting; otherwise, the model is overfitting, 

thereby reducing its generalizability. The model 

becomes more accurate as  decreases, but at the 

price of more support vectors and greater 

complexity. 

2) Random forest: 
A decision tree builds regression models in 

the form of a tree structure. To build a decision tree, 

we should determine which feature used to split the 

data will bring the maximum information gain. 

Subsequently, we split the dataset into subsets. 

Then, we repeat this splitting process on the 

subsets, until the data in the subset are all of the 

same class. Decision trees are simple and efficient, 

but they suffer from highvariancesand tend to 

overfit. 

The bagging algorithm is an ensemble 

method that constructs several simple estimators on 

the subsets of the training set, then aggregates their 

predictions to generate the final result. The bagging 

method works well for low-bias but high-variance 

models (e.g., fully developed decision trees) 

because it provides a way to avoid overfitting. 

RF is the combination of the decision tree 

and bagging methods. The RFmethod utilizes partial 

sampling data to construct many decision trees 

while constraining the number of features of each 

tree to ensure diversity and finally averages the 

results. RFsignificantly benefits from averaging 

because its components tend to overfit (decision 

trees) and are diversified and have low correlation 

(bagging). This bagging idea can effectively prevent 

overfitting and become robust with respect to noise 

[30]. After the training process, we can apply the 

function to the test set. The prediction for an 

unseen sample v  in the test set is 

=1

1
( ) = ( )B

b bF v f v
B

   (9) 

3) Gradient boosted regression: 
TheGBMis another ensemble method that 

uses a decision tree. It is a boosted algorithm 

because a new model is added to the base model to 

correct the residual errors of theoriginal model. 

Boosting aims to build a powerful model by 

combining several weak models. The formulation of 

the gradient boosting machine is 

=1

( ) = ( )
M

m m

m

F v h v  (10) 

where ( )mh v  are the basis functions, which in our 

case are decision trees with fixed sizes and are also 

called weak learners. m  is the step length of a 

gradient descent in the iteration. Given the current 

model 1( )mF v  and label iz  at each iteration, 

decision tree ( )mh v is trained to minimize loss 

function L  (least squares in our case) and obtain 

the new model ( )mF v : 

1

1

=1

( ) = ( )

arg ( , ( ) ( ))min

m m

n

i m i
h i

F v F v

L z F v h v








 (11) 

This minimization problem can be solved with 

gradient descent, which is the acquisition of the 
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minimum loss function values along the negative 

gradient descent direction. 

1

1

=1

( ) = ( )

( , ( ))

m m

n

m F i m i

i

F v F v

L z F v








 (12) 

After training the function ( )F v  using the training 

data, the prediction of the unseen test data v  is 

( )F v . 

4) Ensemble: 
Ensemble is an excellent way to reduce 

generalization error and improve predictive 

performance, especially when ensemble model 

members have low correlations [31]. To improve the 

stability and accuracy of the result, we usedan 

ensemble of three base models described earlier. 

The three commonly used ensemble approaches are 

ranking averaging, weighted averaging, and majority 

voting [32,33]. We compared the performances of 

the three algorithms and finally chose weighted 

averaging as our ensemble strategy. Fig. 3 shows the 

ensemble architecture, which is composed of two 

levels. Level 1 consists of RF, SVR, andGBM, which 

are merged in level 2. Weight ic  is calculated based 

on theperformances of the ensemble members and 
3

=1
=1ii

c .  

 
Fig.3Illustration of the ensemble 
I. CASE STUDY 
F. Dataset description 

We use the data provided by Kaggle ECML-

PKDD 2015 competition 

(https://www.kaggle.com/c/pkdd-15-predict-taxi-

service-trajectory-i/data), which provides an 

accurate dataset of the trajectories for 442 taxis 

running in Porto, Portugal. Each data sample 

represents one completed trip. We only use the 

non-personalized information to promote the 

extendability of our method, and the seven features 

considered are as follows: 

1.  TRIP_ID: (string) Unique identifier for each trip;  

2.  CALL_TYPE: (char) Identifies the way the service 

is demanded and may contain one of three possible 

values: trip dispatched from central, demanded 

directly from a taxi driver on a specific stand, and 

demanded on a random street;  

3.  ORIGIN_STAND: (integer) Unique identifier for 

the taxi stand;  

4.  TAXI_ID: (integer) Unique identifier for the taxi 

driver;  

5.  TIMESTAMP: (integer) Unix timestamp (in 

seconds) that identifies the trip’s start;  

6.  DAYTYPE: (char) Identifies the daytype of the 

trip’s start and is one of three possible values: 

holiday, the day before a holiday, and normal day;  

7.  POLYLINE: (string) Contains a list of GPS 

coordinates mapped as a string and has one pair of 

coordinates for every 15 seconds of the trip;, the 

first and last items correspond to the start andthe 

trip’s destination, respectively.  

 The whole dataset is divided into two 

parts: training and testing sets. The training set is 

used to establish a model, and the testing set is used 

to evaluate the performance of our framework on 

unseen data. The training set contains a full year of 

data, with dates ranging from 01/07/2013 to 

30/06/2014. The testing set contains 320 taxi trips 

between 01/07/2014 and 31/12/2014, and partial 

trajectories are provided. With only 320 trips, the 

test set is small. Therefore, we randomly select 1500 

trips from the training set as our validation set, 

which tunes the model parameters and determines 

the stopping point. Furthermore, the validation set 

can test the robustness of our solutions. 

A. Cluster performance 

Fig. 4 shows an example of the coordinates of 

trips in the testing dataset and corresponding trips 

in the training dataset with low warping path costs. 

The trips extracted from the training dataset always 

have the same heading, and their destinations are in 

a small region.  
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Fig. 4 Clusteringresults 

B. Feature importance 

The importance of features is calculated based on 

RF to estimate the influence of these features on 

journey time. As Fig. 5 shows, the heading of 

adjacent points has a great influence on journey 

time prediction, and the last point’s location has a 

greater impact on the result than the first point’s 

location.  

 
Fig. 5Importance of features 

Fig. 6 shows the destination heat map of the 3103 

trips of taxi ID 20000610. Three major destinations 

are dominant, and we can narrow down the possible 

destinations using the taxi ID. 

 
Fig. 6 Heatmap of destinations of taxi ID = 

20000610 

Results 

A. Evaluation metric 

The evaluation metric for destination prediction is 

the mean haversine distance (MHD) of all predicted 

trips. The haversine distance is introduced in 

Formulas 1 and 2. The root mean square logarithmic 

error (RMSLE) evaluates the travel time prediction, 

which is calculated as   

2

=1

1
(log( 1) log( 1))

n

i i

i

p a
n

  
 

(13) 

where n  is the number of hours in the test set, ip
 

is the predicted trip time, ia
 is the actual trip time, 

and log  is the natural logarithm. 

B. Performance comparison with single models 

Each experiment was conducted 50 times to 

compare the results of the different models and the 

different n values (the number of lowest DTW 

distance trips applied to training). The 

corresponding average results for the validation set 

are shown in Table 2. 

Table 2: Taxi trip prediction result 

 RF SVR GBDT Ensemble 

n=25(RMSLE) 0.50710 0.50081 0.50895 0.49605 

n=25(Mean 

Haversine 

Distance) 

2.51615 2.34878 2.31642 2.30393 

n=50(RMSLE) 0.49650 0.48305 0.48028 0.48001 

n=50(Mean 

Haversine 

Distance) 

2.48480 2.33148 2.27833 2.27797 

n=75(RMSLE) 0.49650 0.48305 0.48153 0.48028 

n=75(Mean 

Haversine 

Distance) 

2.48480 2.33148 2.27945 2.27833 

n=100(RMSLE) 0.49792 0.48312 0.50405 0.48294 

n=100(Mean 

Haversine 

Distance) 

2.47551 2.32685 2.28062 2.27942 

C. Performance comparison over different leader 

boards 

The testing set was divided into two parts: public 

and private. The public leader board provides 

feedback, but the final scores were calculated from 

the private leader board. The private leader board 

was calculated with approximately 50% of the test 

data. Table 3 compares our best ensemble results 

with the results of the top three in the private 

leader board. The trip time and destination in our 

results would have been at the 5th and 22nd 

positions in the private leader board, respectively, 

using the ensemble result with the 50 closest trips 
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and can serve as benchmarks for these two 

problems.   

Table  3: Public and private leaderboards 

 PublicRM

SLE 

PrivateR

MSLE 

PublicM

HD 

PrivateM

HD 

First-

placeres

ults 

0.50391 0.52528 2.53217 2.03489 

Second-

placeres

ults 

0.53252 0.52787 2.36446 2.08772 

Third-

placeres

ults 

0.49408 0.53097 2.44518 2.11751 

Ourresul

ts 

0.53166 0.53912 2.33258 2.24419 

Discussion 

From Table 2, we can draw the following 

conclusions. First, the results varied for different n ; 

a suitable n  can guarantee sufficient data samples 

without introducing excessive outlines. In our case, 

the best results were achieved when n=50. Second, 

the proposed ensemble model was compared with 

single models. The ensemble model outperformed 

the single models in both tasks due to the significant 

diversity among the three models. 

Table 3 shows that the champion teams in taxi 

destination prediction do not always score highly in 

the public leader board in both tasks, which means 

that most of other commits tend to over fitting. Our 

results are consistent between both leader boards, 

which illustrates the robustness of our method. 

Conclusion 

We propose a data-driven predictive 

framework, which consists of DTW and ensemble 

learning, to simultaneously predict taxi trip 

destination and journey time. The DTW algorithm is 

used to extract similar paths and ensemble learning 

is used to predict the destination and journey time. 

The experimental results using a taxi trajectory 

dataset from Porto, Portugal show that our models 

predict both variables well. Unlike NN, our method 

does not need map matching and artificial 

experience. Furthermore, our model is faster and 

more interpretable than NN. Finally, our algorithm 

can be easily applied to other datasets because it 

does not utilize personal information (thereby 

upholding privacy protection) and the required data 

are readily available and easy to collect.  
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