
International Journal of Engineering Research-Online
A Peer Reviewed International Journal

Articles available online http://www.ijoer.in; editorijoer@gmail.com

Vol.7., Issue.5, 2019
Sept-Oct

42 Dr. AMAMER KHALIL MASOUD AHMIDAT et al.,

AN ARCHITECTURE FOR THE DEVELOPMENT OF COMPUTER VISION APPLICATIONS
AND DIGITAL IMAGE PROCESSING IN EMBEDDED SYSTEMS

Dr. AMAMER KHALIL MASOUD AHMIDAT1,

MUHAMAD ABDULLA MUHAMAD ABDUSSALAM2

1Higher Institute of Medical Technology in Bani Walid.
Email:mkmasoud@hotmail.com

2Higher Institute of Medical Technology in Bani Walid.
Email: mrabett34@gmail.com

DOI: 10.33329/ijoer.75.42

ABSTRACT

This article presents the hardware and software framework that leads to the design

of Computing Vision and Digital Image Processing technologies in Embedded

Systems, especially Smart Cameras. Smart cameras are cameras which, in addition to

capturing images, are capable of extracting specific information for the application.

Embedded systems are systems made up of hardware and software designed to

perform specific tasks integrating computing and input and output devices provided

by applications. Computer Vision can be described as the ability to automatically

recreate a mathematical model from one or more objects in a given scene. The

mathematical or computer model is able to provide information about the scene

previously recorded only in images. This is then the inverse process to Free

Computing in which the computing system, from a mathematical model, generates

digital images. The Digital Image Processing area is, therefore, the basis for the

development of any Computer Vision application, as it is responsible for the

manipulation of images, which are the first input of a Computer Vision application.

The resource constraints inherent to Embedded Systems coupled with the

complexity of Computer Vision hinders the construction of applications within these

two contexts. The solution, proposed in this paper, is to build an architecture that

helps the developer, abstracting details of the Embedded System and the Computer

Vision algorithms.

Keyword: Computer Vision, Smart-cameras, Architecture

1.0 Introduction

Smart Cameras is defined as a Vision

System which, besides capturing images, is able to:

extract information relevant to the application;

generate events based on information from the

captured image; make decisions that are used in

intelligent, autonomous systems They are closed

systems that encapsulate to the communication

interface, for example Ethernet. Noticeably more

compact than personal computer-based Computer

Vision Systems.

1.1 Embedded Systems

Embedded systems are systems composed of

hardware and software designed to perform specific

tasks combining processing and input and output

devices required by applications. Usually in these

systems there are resource constraints such as main

memory, disk space or ash (used for rmware

RESEARCH ARTICLE ISSN: 2321-7758

http://www.ijoer.in/
mailto:mkmasoud@hotmail.com
mailto:mrabett34@gmail.com
https://doi.org/10.33329/ijoer.75.32
https://doi.org/10.33329/ijoer.75.32

International Journal of Engineering Research-Online
A Peer Reviewed International Journal

Articles available online http://www.ijoer.in; editorijoer@gmail.com

Vol.7., Issue.5, 2019
Sept-Oct

43 Dr. AMAMER KHALIL MASOUD AHMIDAT et al.,

storage, Operating System), input and output

devices (monitor, keyboard). Thus, for Embedded

Systems to meet performance requirements, a well-

designed project needs to be carried out in order to

reduce product cost and size while meeting

application constraints1.

Application development for embedded

system devices is becoming increasingly complex

and multidisciplinary as the need for complete

applications is increasing. This requires that

Embedded Systems application development be

able to provide multi-functional and compatible

applications, but at the same time simple and low

cost development. Embedded System device

manufacturers provide proprietary, platform-

specific development environments. However,

development environments do not have an

established standard, at the manufacturer's

discretion to provide the features and features

provided. Platform independence is an important

and motivating aspect of this work, as the designed

architecture abstracts inherent and specific details

from each platform, making it possible to exclude

the development environment provided by the

process manufacturer. This ensures code reuse

regardless of the platform used. However, it is

necessary that the device in question be able to

interface with the low level, part of the architecture

designed here Schmidt [2002]2.

The large amount of processing required by

Digital Image Processing applications3 and

consequently the area of Computer Vision combined

with the availability of processors optimized for this

type of application is a reason to choose. This area

of knowledge in this paper. The Black in processor4,

a hardware platform optimized for digital image and

video processing, was used. This platform was used

in the development of the architecture resulting

from this work and described here to assist in the

creation of applications and Computer Vision and

Digital Image Processing aware.

1.2 Computational Vision and Digital Image

Processing

There are several of Computer Vision

definitions5. One is the ability to automatically

reconstruct the mathematical model from one

image or more images from a given scene. The

mathematical or computer model is able to provide

information about the scene recorded in image only.

This is then the inverse process to Free Computing,

in which the computing system, from a

mathematical model, generates digital images6. The

Digital Image Processing area is, therefore, the basis

for the development of any Computer Vision

application, as it is responsible for the manipulation

of images, which are the first input of a Computer

Vision application. It can be defined as processing a

digital image, represented by a two-dimensional

function, f (x, y), where x and y are spatial

coordinates in the plane and the amplitude off in

any ordered pair (x, y) is called intensity of the

image at the given point. An image is called digital

when the values of f are discrete and sharp. There is

no consensus on the boundaries between Computer

Vision and Digital Image Processing, an acceptable

delimitation is that Digital Image Processing deals

with processes whose inputs and outputs are digital

images and processes that extract attributes from

digital images.

The area of Computer Vision is by nature

multidisciplinary. It uses concepts, techniques and

approaches from other disciplines mainly in the area

of computing, but is not limited to it. Some of these

disciplines are: signal processing, physics,

mathematics, artificial intelligence, robotics,

neurobiology (biological view), among others7.

Due to the richness and breadth of the

Computer Vision area, developing Computer Vision

systems may require the programmer to mature in

different areas of knowledge. Regardless of the

application developed, it will inevitably be necessary

to capture and process a digital image, because the

process of Computer Vision begins in the acquisition

of the scene image. The basic process of image

acquisition and processing by applying a basic filter

to reduce noise becomes constant in the

development of Computer Vision applications. It is

therefore useful to reuse methods that do this

processing whenever you need to use them.

Computational Vision application development

frameworks, such as the Open CV library8, are

widely disseminated and used for this purpose.

These libraries, however, require knowledge of their

http://www.ijoer.in/

International Journal of Engineering Research-Online
A Peer Reviewed International Journal

Articles available online http://www.ijoer.in; editorijoer@gmail.com

Vol.7., Issue.5, 2019
Sept-Oct

44 Dr. AMAMER KHALIL MASOUD AHMIDAT et al.,

functions and implementation details to generate a

high performance application. The learning curve

may be unfavorable and nontrivial programming,

thus adding to the list of prerequisites for the

development of applications in Computer Vision.

1.3 Review of Literature

1.3.1 WISDOM and YATOS

WISDOM is part of a work developed with the

now defunct SensorNet research group9 to create an

operating system (YATOS) and middleware

(WISDOM) designed specifically for the context of

Wireless Sensor Networks. It was designed to serve

as a development platform for the group and is

therefore a particular case of using middleware to

facilitate application development in embedded

systems10.

The designed middleware features low-level

cross-platform and multi-language features, that is,

it can be used to develop applications on

heterogeneous platforms and languages, provided

they are properly configured. It also has an intuitive

graphical programming methodology, making use of

the Java language11 to be portable.

This work is similar to what is described in

this paper, however its context is specific

applications of sensor networks as opposed to the

Computational Vision and Digital Image Processing

in Embedded Systems performed in this work.

1.3.2 µCLinux

ΜCLinux is a Linux 2.0 kernel-based operating

system. It was initially ported to microcontrollers

without Memory Management Unit (MMU). MMUs

are hardware devices that translate virtual

addresses into physical addresses.

The µCLinux Project, however, has grown and

currently provides operating systems that use Linux

Kernels 2.0, 2.4, and 2.6 for many different

hardware architectures. Among them is Black n,

which was used as the first hardware platform of

this work.

ΜCLinux was chosen to be used as an

abstraction layer of Black n features and details

because it is similar to the Linux operating system,

managing memory, managing file system,

implementing high level network interfaces and

multitasking. These features helped in the

development of the hardware and software

interface, whose main benefit is the achieved

abstraction.

1.3.3 TinyOS

TinyOS is an event-based operating system

for sensor networks without. It was developed using

the nesC programming language as described in

TinyOS [2007a]12. NesC is a variation of the C

language, given in Kernighan [1988]13, optimized to

deal with the memory limitations of sensor

networks without.

1.3.4 Image Processing Library 98 - IPL

The Image Processing Library (IPL) is an

independent C / C ++ image manipulation platform.

Its purpose is to assist in the creation of new

processing techniques as well as to provide standard

methods for processing images. It is the basis of the

OpenCV library described in the next sections.

1.3.5 Open Source Computer Vision Library -

OpenCV

The Open Computer Vision Library (OpenCV)

is a library produced by Intel and its focus is on real-

time Computer Vision application. This library is

optimized to take advantage of the MMX

multimedia instructions contained in Intel

processors. For this reason, it is usually used in

general purpose computers.

This library is based on the IPL, it has a wide

range of functions ranging from managing the image

matrix in memory to creating a graphical interface

for the application.

1.3.6Matlab

Matlab is a high-level, interactive modelling

tool widely used in digital image processing courses

because it enables the simple use of procedures

used in applied mathematics disciplines. However,

Matlab has several limitations such as the absence

of references, unconventional syntax, and

ambiguity. Also, Matlab does not focus on

performance. These reasons, combined with the fact

that it is closed source, make it difficult to use this

feature in the proposed tool. Another important

http://www.ijoer.in/

International Journal of Engineering Research-Online
A Peer Reviewed International Journal

Articles available online http://www.ijoer.in; editorijoer@gmail.com

Vol.7., Issue.5, 2019
Sept-Oct

45 Dr. AMAMER KHALIL MASOUD AHMIDAT et al.,

aspect is the need for use in embedded systems,

where information storage restrictions are still

present. A complete tool like Matlab would not be

suitable for the target platform of this work.

1.3.7 Image Analysis - Analog Devices

The Image Analysis library from Analog

Devices, a manufacturer of Black n, provides the

assembly implementation for Black n of the basic

image processing functions supported by this

platform. It is optimized for use on Black n. Image

Analysis has been translated into C language and

compiled for use by µCLinux

1.3.8 Other Works

There are industry initiatives to provide

middleware solutions for embedded application

development. These solutions tend to be generic

and therefore do not leverage hardware resources

to improve application performance. However,

there are few scientific references about the

construction of these tools, this is another

motivating factor for this work.

2.0 Objectives

This work is part of a larger project that

includes building a software and hardware

architecture that assists in the development of

Computer Vision and Digital Image Processing

applications in Embedded Systems. This paper deals

only with software architecture.

The architecture as a whole was designed to:

promote the reuse of basic resources (code) to

ensure a developed system quality and reduce costs;

isolate the hardware platform from the developed

application; ensure intellectual property and

security of the hardware platform; enable the

development and execution of complete and real

applications in heterogeneous systems; abstract

details of the hardware platform; encapsulate

hardware restrictions and limitations; provide an

intuitive programming model.

This paper describes and describes the

designed architecture. In addition, it describes the

implementation of software for the translation,

generation, transmission, control and execution of

the user-developed program up to the Embedded

System, an integral part of the designed

architecture. The implementation of the hardware

abstraction layer will be presented by its author as

part of his master's dissertation, it complements the

present work.

3.0 BUILT ARCHITECTURE

The built architecture resides between the

user and the Embedded System operating system

used, Figure 3.1. The architecture allows the

abstraction of details of the Embedded System used

as well as the making of high level applications.

Figure 3.1. Architecture Location

The architecture was designed to be

modular. To this end, its implementation was

divided into two modules, tool and middleware. The

scheme in Figure 3.2 shows the developed

architecture segmented in its two distinct parts. The

tool interfaces with the user (programmer) of

applications in Computer Vision and Digital Image

Processing. Its main functions are: translation and

code generation provides the user with resources

for application development, enabling the making of

high level applications, transparent to the hardware

platform used.

Transmission and execution of the program

control of the transmission of the code generated

when it will be executed in the chosen processor

and control of the execution of this program.

Middleware works at the low level of

architecture, that is, it interfaces with the Operating

System, µCLinux. Its main function is to abstract the

operating system layer and therefore hardware

details.

The design of the architecture as a whole and

the implementation of the tool have been part of

this work, and are described in detail here.

However, the implementation of middleware is part

of the master's work of Glauber Tadeu14. Thus, the

http://www.ijoer.in/

International Journal of Engineering Research-Online
A Peer Reviewed International Journal

Articles available online http://www.ijoer.in; editorijoer@gmail.com

Vol.7., Issue.5, 2019
Sept-Oct

46 Dr. AMAMER KHALIL MASOUD AHMIDAT et al.,

middleware design features were included in this

text, implementation details were at the discretion

from its author. Middleware design decisions made

as part of this paper is detailed in the coming part.

Figure 3.2. Architecture Composition: Tool and

Middleware

Figure 3.3. Detailed built architecture

In Figure 3.3, a detailed diagram of the projected

architecture is shown. In this diagram are the

interactions present and the modules responsible

for each of them. The user interacts with the tool,

this interaction is performed by the Tool Interface

module. This module aims to assist the user in

programming

3. Built Architecture

Through the availability of high-level

hardware resources as well as the graphical

representation (built XML tree) of the application.

The interface module interacts with the processing

module, whose main tasks are to maintain the

language structure, generate and execute the XML

code to be interpreted by middleware. The

processing module interacts with the

communication module to, through the protocol

provide middleware with capabilities for

interpreting XML. Middleware, in turn, has a

communication module that implements the server

part of the communication protocol; this module

captures XML and transfers control to the parser

that processes XML generating a list of functions.

From this point on, XML is no longer used. The

control module then uses built-in function list

structures, APIs, and file management to execute

portions of the user application delegated by the

application. By design decision, only the Camera API

has direct communication with the camera,

simplifying the process of adapting the architecture

to a new camera.

3.1 Middleware

As Geihs [2001]15, middleware masks the

heterogeneity of computer architectures, operating

systems, programming languages, network

technologies, and facilitates application

development. The sharp middleware during the

present work masks these heterogeneities and is

therefore allied to the tool presented in coming

sections resulting in the designed architecture.

3.1.1 Definition of architecture

The main purpose of middleware is to

facilitate the development of embedded systems

applications through platform independence. This is

done through the abstraction of hardware details

made possible by the included OS layer. Figure 3.4

locates middleware against the Embedded System

and its hardware / software interface; middleware

acts at the interface between the operating system

and the tool, abstracting the details from the lower

level layers (operating system and, consequently,

hardware) to the higher level layers (tool). The

instance chosen by this work is to devise a

http://www.ijoer.in/

International Journal of Engineering Research-Online
A Peer Reviewed International Journal

Articles available online http://www.ijoer.in; editorijoer@gmail.com

Vol.7., Issue.5, 2019
Sept-Oct

47 Dr. AMAMER KHALIL MASOUD AHMIDAT et al.,

middleware that interfaces specifically to produce

Digital Image Processing and Computational View

applications, developed by the tool and compatible

computational architectures. However, the concept

used is not limited to these applications. The

implemented architecture can be used for the

development of general purpose applications.

However, using hardware platforms optimized for

this is recommended.

Figure 3.4. Middleware Location

The architecture designed for middleware is shown

in Figure 3.5. Each platform is represented by a

rectangle. At the highest level is any tool that

implements the middleware communication

protocol. The tool uses the abstraction layer

provided by middleware to interact with each

hardware platform transparently. Using this

protocol allows middleware to be used by any tool

capable of implementing it, and vice versa. At the

lowest level are the hardware platforms that

implement the Operating System communication

API. To validate the concept of this work, two

platforms were used: Black n and a personal

computer. Using an API enables middleware to

communicate with any platform that can implement

it. This feature allows the abstraction and

transparency of the hardware architecture provided

by the middleware. Other systems are represented

in the middleware architecture definition; just

implement the middleware communication API to

port it.

Figure 3.5. Definition of middleware architecture

3.1.2 Features

The developed middleware consists of an

abstraction layer between the tool and the

operating system provided by the hardware

architecture in question. This layer facilitates the

development of Embedded Systems Digital Image

Processing applications as it abstracts the details of

the configuration and operating routines of the

platform in question, allowing heterogeneous

hardware architectures to be programmed similarly.

From middleware, we developed a software

development tool for Computational Vision and

Digital Image Processing for Embedded Systems,

especially Black n described in Section 3.2.

Middleware provides benefits to software

development processes through:

Reuse of Basic Features

Code reuse is a well-known software engineering

technique to ensure the quality of a system.

 Isolation

 Independence between hardware
architecture and tool

 Intellectual Property Security and
Assurance

 The user does not need to have access to
the hardware platform details to develop
their applications.

These features are achieved through the

ability of the middleware, through the operating

system, to abstract heterogeneities of computer

architectures, operating systems, and programming

languages.

http://www.ijoer.in/

International Journal of Engineering Research-Online
A Peer Reviewed International Journal

Articles available online http://www.ijoer.in; editorijoer@gmail.com

Vol.7., Issue.5, 2019
Sept-Oct

48 Dr. AMAMER KHALIL MASOUD AHMIDAT et al.,

The middleware was designed to utilize the

features provided by the µCLinux operating system

at first. ΜCLinux, in turn, is running on the Black n

processor. BlackFin was chosen because it is

optimized for digital processing of images and

videos and, therefore, adapting to the scope of

applications referenced in this work (Digital Image

Processing and Computer Vision). The choice of

µCLinux was because it is an open source operating

system and is similar to the Linux operating system

and thus is possible because the written code for it

is portable to standard Linux operating systems. It

also allows performance comparison between the

standard Linux system running on a computer and

the Embedded System.

3.2 Tool

The tool implemented in this work aims to

use middleware functionalities to provide the user

with a high level and transparent hardware

programming model. It is the function of the tool to

manage the translation, generation, transmission

and control of program execution by the user.

The built-in tool generates language and

platform-independent code (XML) as long as the

latter implements the middleware API.

3.2.1 Definition of architecture

The main objective of the tool is to provide an

intuitive and transparent user interface to program

the application of Computer Vision and Digital Image

Processing in the chosen Embedded System. In

addition, the tool is responsible for controlling the

execution flow of the developed applications. That

is, the tool determines which parts of the user code

will be executed in the tool itself and which parts

will be executed in the Embedded System, for

example Black n. It locates the tool in the Embedded

System and its hardware / software interface; the

tool acts on the interface between the middleware

and the user, providing an intuitive and transparent

programming interface and controlling the

execution of the built program. For this work,

ImageAnalysis library functions and a subset of the

OpenCV library, present in the middleware, were

implemented.

The tool was developed with the following

requirements in mind:

• Enable the execution of applications in a

manner and aware of various embedded

systems by generating code for each

specific compiler. The optimizations

provided by the compilers would thus be

taken advantage of.

• Enable modularized application

development.

• Abstract the hardware. Allowing the

hardware architecture not to be exposed to

the user.

Features

The developed tool assists the

development of Computer Vision and Digital Image

Processing applications by building a tree

representative of the functions performed by the

application. This tree gives rise to XML that is

representative of the user's application and is

independent of the hardware platform,

programming language, and processing API used. In

Figure 3.6 is an example of a simple linear program

tree, which only applies the µOpenCv API threshold

filter to the framebuer generated by the application.

<head>

<name>Example</name>

<author>Antonio</au

thor>

<version>1.0</versio

n>

<date>20081010</dat

e>

</head>

<function>

<api>u/gOpenCv</api>

<name>threshold</na

me>

<param>

<value>200</val

ue>

http://www.ijoer.in/

International Journal of Engineering Research-Online
A Peer Reviewed International Journal

Articles available online http://www.ijoer.in; editorijoer@gmail.com

Vol.7., Issue.5, 2019
Sept-Oct

49 Dr. AMAMER KHALIL MASOUD AHMIDAT et al.,

<type>int</type

>

</param>

</function>

</blackfinProgram>

Code 3.2.2 shows the XML corresponding to the tree

shown in Figure 3.8. The counterpart of the program

tree is XML. It does the processing process done and

determines the names of APIs, functions,

parameters, and returns. Thus, it is necessary to

implement, in the embedded system, a server

capable of decoding the information contained in

XML and performing the necessary operations. In

addition, other information, such as the XML

header, or program author, date, and version

information through the head tag.

For application development, the user

chooses the order of constructs made possible by

the language and the API functions with their

respective parameters and adds them one by one to

the function tree. Once created the tree is

generated XML, used by the tool to execute the

program. Middleware is responsible for executing

only the processing APIs. The tool is responsible for

the execution of the other language constructs, ie,

control of frames and frames. In Figure A.1 is the

application build window and its function tree. In

more complex constructions it is possible to interact

with the nodes of the application's structured tree

to detail each construct, such as constants,

parameters, expressions, etc. In Appendix A are the

screens built for the tool.

You can choose between two distinct APIs

and processing, or one of the language constructs.

analog

ImageAnalysis by Analog Devices

• sobel

• erode

• dilate

• skeleton

• median

• perimeter

uopencv

subset inspired by Intel's OpenCV library

• threshold

• linepro le

 • negative

• histogram

• countWhite

• getRect

• ood ll

• conv

control

A key feature of the tool, and of the

architecture as a whole, was that of defining the

frame model used. The framework is a frame list list

accumulator model, that is, there is the main frame

(accumulator). All operations are performed on and

written to this framebuer. In addition to the

accumulator, there is a list of framebuffer that is

used to manipulate the accumulator data into

memory. For example, if the user wants to save the

framebuer before a given operation, simply copy the

accumulator to the list via the push operation

3.2.2.1 Language

An application development language is used that is

used to compile XML. The language was clear and in

order to meet the minimum requirements of making

complete and real applications possible. Thus, the

following general purpose constructions have been

defined. The nida language here is hereinafter

referred to as XML language.

decl

Declaration of variables; reserve space in main

memory. In the implementation adopted every

variable is a vector. Variables are of byte type.

Statements should be written at the beginning of

the program. They are not counted as execution

thread functions (cannot jump to a statement).

assign

Variable flag: assigns a value to the previously

declared variable

go to

Unconditional jump; jumps to the clear position in

the application execution range. In implementation

the goto's are nothing more than if the condition is

always true. The address is absolute (it is not

possible to jump back using a negative address).

http://www.ijoer.in/

International Journal of Engineering Research-Online
A Peer Reviewed International Journal

Articles available online http://www.ijoer.in; editorijoer@gmail.com

Vol.7., Issue.5, 2019
Sept-Oct

50 Dr. AMAMER KHALIL MASOUD AHMIDAT et al.,

if

Conditional jump; change which will be next

construct in the execution thread if the expression is

true. The expressions used were based on C's

sharpness pattern.

function

API function; performs a function of one of the nidas

APIs available. Functions have parameters and

language returns, if any. This build is performed by

middleware.

return

Return of the application; marks which variable will

be returned when the halt operation is performed.

halt

End of application; marks the end of the application.

These constructions were defined based on

the C language. Thus, it is possible to draw a parallel

between the two languages. Table 3.1 shows the

constructions in C and their counterpart in the

language of definition.

Table 3.1 Parallel between XML and C: General Purpose Constructs

C XML

5*int var; <decl>

<var>var</var>

<size>1</size>

<type>int</type>

</decl>

6*var = 0; <assign>

<var>var</var>

<position>0</position>

<value>0</value>

<type>int</type>

</assign>

2*out: <goto>

goto out; <address>9</address>

 </goto>

3*if (var > 8192) <if>

 <expression>var > 8192</expression>

goto out; <goto>9</goto>

 </if>

13*var =

function(128)

<function>

<api>api</api>

<name>function</name>

<param>

<value>128</value>

<type>int</type>

</param>

<return>

http://www.ijoer.in/

International Journal of Engineering Research-Online
A Peer Reviewed International Journal

Articles available online http://www.ijoer.in; editorijoer@gmail.com

Vol.7., Issue.5, 2019
Sept-Oct

51 Dr. AMAMER KHALIL MASOUD AHMIDAT et al.,

<var>var</var>

<pos>0</pos>

<type>int</type>

</return>

</function>

7*return var; <return>

<var>var</var>

<pos>0</pos>

<size>1</size>

<type>int</type>

</return>

<halt/>

instruction XML

4*capture <capture>

<height>512</height>

<widht>512</widht>

</capture>

3*push <push>

<pos>0</pos>

</push>

3*pop <pop>

<pos>0</pos>

</pop>

3*save <save>

<name> lename</name>

</save>

3*load <load>

<name> lename</name>

</load>

Table 3.2. Parallel between XML and C: specific

purpose constructs with

3.3 Interface between Tool and Middleware

The interface between the implemented tool

and the designed middleware is performed through

a network layer. The TCP / IP protocol was used to

establish the connection between the tool and the

middleware. All communication is performed

through the application level communication

protocol, it is defined as bellow.

Communication protocol

The implemented protocol is based on ASCII

(American Standard Code for Information

Interchange) . The client-server model Silberschatz

and Galvin [2000]16 is used in which the tool is the

client and the middleware the server. The main use

case consists of a client-server transaction. A

transaction consists of exchanging messages in ASCII

code between client and server to complete an

operation. The list of possible transactions is listed

below. The complete protocol is shown in detail in

Table 3.3.

Reset

http://www.ijoer.in/

International Journal of Engineering Research-Online
A Peer Reviewed International Journal

Articles available online http://www.ijoer.in; editorijoer@gmail.com

Vol.7., Issue.5, 2019
Sept-Oct

52 Dr. AMAMER KHALIL MASOUD AHMIDAT et al.,

Restores the system to its initial default

settings.

Stream file

File transfer from client to server.

Update Version

Streaming server version.

Refresh Image

Transmission of the image from the

accumulator to the customer.

Upload image

Loads from client image to accumulator.

Capture image

Captures image from sensor attached to

server to accumulator.

Select XML

Selects which XML file to load on the server.

Load XML

Loads the XML program to run on the server.

 3. Built Architecture 34

Run XML

Runs the XML program loaded on the server.

4.0 RESULTS

The architecture is designed for the intuitive

development of code-generation and aware

applications for various Embedded Systems that can

support the design of embedded systems

applications.

Some features and features offered by the

architecture include:

• Constraint abstraction of the details of the

platform used.

• Code generation for execution on each

desired platform in a transparent way for

the user.

• Providing an intuitive programming model

ideally graphical.

4.1 Case Study: Presence or Absence

This was the first application written using

the software and hardware architecture developed

in this paper. The purpose of this program is to

answer the question: "Is there an object in the given

image?".

For didactic reasons, the first step is to define

the execution speed of the application. In Figure 4.1,

the execution flow of this application is set. Initially,

you must initialize the variables and structures that

will be used in the application. The second step is to

binarize the image. The third step is to count the

amount of white pixels in the image. The fourth step

is to decide whether or not the amount of white

pixels is sufficient to consider that the object is

present in the image. The fifth and last step is to

return the result.

Figure 4.1. Presence or Absence Application

Execution Flow

To serve as a control, the application described

above was coded in C language and using the

architecture of this work presented in Figure 4.2.

1 present () 2 {

3 intnumWhite = 0, r and t;

4 threshold (1 2 8);

5 numWhite = countWhite ();

6 if (numWhite> 8192) 7 r and t = 1;

8 else

9 ret = 0;

10 returnret; 11}

One can see the similarity of both C and

Architecture codes to the execution flow. Both

http://www.ijoer.in/

International Journal of Engineering Research-Online
A Peer Reviewed International Journal

Articles available online http://www.ijoer.in; editorijoer@gmail.com

Vol.7., Issue.5, 2019
Sept-Oct

53 Dr. AMAMER KHALIL MASOUD AHMIDAT et al.,

implementations happen almost directly from the

execution stream coding. Table 4.1 of the mapping

between execution thread, C code and Architecture

code.

In Figure 4.2, the data for each tag in the XML is

omitted. However, they can be obtained by

analyzing the XML code generated from the

definition of the architecture application.

Figure 4.2. Presence or Absence in Architecture

Table 4.1. Mapping between approaches: presence

or absence

C line Architecture

element

XML Line Flow

3 0-1 10-22 First step

4 2 23-30 Second step

5 3 31-38 Third step

6-9 4-8 39-58 Fourth step

10 9-10 59-65 Fifth step

4.2 Case Study: Presence or Absence with Error

Control

This application was chosen because it shows the

specific purpose framebuster control features

implemented in the language. It consists of applying

Presence or Absence added error control, that is, an

object is considered to be present only if it is within

a preset count interval. That is, hysteresis.

For didactic reasons the first step is to define the

application execution flow. In Figure 4.3, the

execution flow of this application is set. Initially, it is

necessary to initialize the variables and structures

that will be used in the application. The second step

is to binarize the image using a variable threshold.

The third step is to count the amount of white pixels

in the image. The fourth step is to decide whether or

not the amount of white pixels is sufficient to

consider that the object is present in the image, if

the judgment is indecisive, turn to the beginning by

raising the threshold and trying again. The fifth and

last step is to return the result.

Figure 4.3. Presence or absence application

execution flow with error control

To serve as a control, the application described

above was coded in C language and using the

architecture of this work presented in Figure 4.4.

1 int presence () 2 {

3 int numWhite = 0, r and t = 0, t h r and s h o l d; 4

push (0);

5 threshold = 118;

6 while (threshold <240)

4. Results 44

7 {

8 pop (0);

9 threshold = threshold + 10;

10 if (threshold> 240)

11 return 0; // missing

12 push (0);

13 threshold (threshold);

http://www.ijoer.in/

International Journal of Engineering Research-Online
A Peer Reviewed International Journal

Articles available online http://www.ijoer.in; editorijoer@gmail.com

Vol.7., Issue.5, 2019
Sept-Oct

54 Dr. AMAMER KHALIL MASOUD AHMIDAT et al.,

14 numWhite = countWhite ();

15 i f (numWhite> 8192 + 4096)

16 return1; // gift

17 elseif (numWhite> 8192 - 4096) 18;

19 else

20 return 0; 21}

22 return ret; 23}

Both implementations (C code and Architecture

code) almost directly reflect the execution thread

coding. Table 4.2 of the mapping between execution

thread, C code and Architecture code.

In Figure 4.4, the data for each tag in the XML is

omitted. However, they can be obtained by

analyzing the XML code generated from the

definition of the architecture application.

Figure 4.4. Presence or Absence with Error Control

in Architecture

Table 4.2. Mapping between approaches: presence

or absence with error control

C line Architecture

element

XML Line Flow

3-5 0-3 10-37 First step

6-13 4-8 38-60 Second step

14 9 61-68 Third step

15-20 10-11 69-76 Fourth step

21-22 12-17 77-98 Fifth step

5.0 Conclusion

This paper designs an architecture that spans

software layers, through the human-computer

interface, to the low-level hardware driver layer. The

work also comprises the implementation of the

highest-tier architecture, consolidating user

interface, translation and code generation

functionality.

The architecture was designed to support

Computer Vision and Digital Image Processing

applications in Embedded Systems. However, the

end result was a general purpose architecture. It can

be used for the development of any type of

application, provided the processing APIs

implemented in middleware. The architecture

implements a general purpose language, which has

no conceptual constraints when using regular, non-

embedded systems. In particular for Linux systems,

simply compile the middleware for the target

architecture in question.

The architecture as a whole has the features

of: providing an intuitive programming model

through the graphical programming interface

implemented by the tool; promote the reuse of

basic resources (code) to ensure the quality of the

system developed through the use of processing

APIs; ensure the intellectual property and security of

the hardware platform by including middleware;

isolate the hardware platform from the application

developed by adopting the µCLinux Operating

System; enable the development and execution of

complete and real applications in heterogeneous

systems; abstract details of the hardware platform;

http://www.ijoer.in/

International Journal of Engineering Research-Online
A Peer Reviewed International Journal

Articles available online http://www.ijoer.in; editorijoer@gmail.com

Vol.7., Issue.5, 2019
Sept-Oct

55 Dr. AMAMER KHALIL MASOUD AHMIDAT et al.,

encapsulate hardware restrictions and limitations by

adopting an Operating System.

For future work on architecture, it is

recommended to improve the communication

protocol implementation between the tool and the

middleware, using the construction of true

transmission control protocol (TCP) packets instead

of using an ASCII-based protocol. , because it

inevitably has an overhead because the information

in this case is coded using only the ASCII textitbyte.

Another possibility is to automate the manipulation

of the middleware libraries by the tool, ensuring the

user the ability to use any APIs they know without

having knowledge of the architecture.

Specifically about the tool, part of the

implementation described in this paper, there are

four tasks: user interface, translation, code

generation and application execution. All of these

tasks are not the critical path of the designed

architecture. Once the application is developed it is

downloaded through middleware and executed in

isolation. Thus, the performance of the program

development tool is not linked to the performance

of the application since the tool is not in the

optimization context.

For future work on the tool, it is

recommended to analyze the quality of the code

generated by the tool in the target embedded

system. As the code generated by the tool is

interpreted, its performance is expected to be

degraded. The transition from interpreted code to

its compiled counterpart coupled with optimization

can provide performance gain for critical

applications in this regard. Another possibility is the

adoption of a diagram-based programming system,

further improving the ease in the adopted

programming model. In addition, the application

execution architecture can be improved by enabling

distributed application execution by using more than

one embedded system at the same time,

introducing parallelism.

References

1 Malek, S .; Seo, C. and Medvidovic, N. (2006).

Tailoring an architectural middleware

platform to a heterogeneous embedded

environment. In SEM '06: Proceedings of the

6th International Workshop on Software

Engineering and Middleware, pp. 6,370, New

York, NY, USA. ACM Press.

2 Schmidt, D.C. (2002). Middleware for real-

time and embedded systems. Commun.ACM,

45 (6): 43 48.

3 Gonzalez, W. (2002). Digital Image

Processing. Prentice Hall, 2nd edition edition.

4 Devices, A. (2005). Adsp-bf537 black n

processor - hardware reference. http: //

www. analog.com/processors/blackfin/.

5 Trucco, E. and Verri, A. (1998). Introductory

Techniques for 3-D Computer Vision.Prentice

Hall PTR, Upper Saddle River, NJ, USA.

6 Coatrieux, J.L. (2005). Computer vision and

graphics: frontiers, interfaces, crossovers and

overlaps in science. Engineering in Medicine

and Biology Magazine, 24 (1): 16 19.

7 Trucco, E. e Verri, A. (1998). Introductory

Techniques for 3-D Computer Vision.Prentice

Hall PTR, Upper Saddle River, NJ, USA.

8 Corporation, I. (2007). Open cv library.

http://www.intel.com/technology/

computing/opencv/.

9 SensorNet. Sensornet http:

//www.sensornet.dcc.ufmg. br / index.html.

10 Vieira, L.FM (2004). Middleware for

Embedded Systems and Sensor Networks.

Dissertation (Master). UFMG Federal

University of Minas Gerais.

11 Deitel, H.M. and Deitel, P.J. (2001). Java How

to Program. Prentice Hall PTR, Upper Saddle

River, NJ, USA

12 TinyOS, A. (2007a). nesc - network embedded

systems c. http://www.tinyos.net.

13 Kernighan, B. W. (1988). The C Programming

Language. Prentice Hall Professional

Technical Reference.

14 de Sousa Carmo, G. T. (2009). DSCam: A

hardware-software platform for Computer

Vision operations. Dissertation (Master).

UFMG Federal University of Minas Gerais.

http://www.ijoer.in/

International Journal of Engineering Research-Online
A Peer Reviewed International Journal

Articles available online http://www.ijoer.in; editorijoer@gmail.com

Vol.7., Issue.5, 2019
Sept-Oct

56 Dr. AMAMER KHALIL MASOUD AHMIDAT et al.,

15 Geihs, K. (2001). Middleware challenges

ahead. Computer 34 (6): 24 31

16 Silberschatz, A. and Galvin, P. B. (2000).

Operating System Concepts. John Wiley &

Sons, Inc., New York, NY, USA

http://www.ijoer.in/

