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ABSTRACT  

Thermosolutal instability of Veronis type in couple-stress fluid in a porous medium is 

considered. Following the linearized stability theory and normal mode analysis, the 

paper mathematically established the condition for characterizing the oscillatory 

motions which may be neutral or unstable, for any arbitrary combination of free and 

rigid boundaries at the top and bottom of the fluid. It is established that all non-

decaying slow motions starting from rest, in a couple-stress fluid of infinite horizontal 

extension and finite vertical depth in a porous medium, are necessarily non-oscillatory, 

in the regime 

                                                         

  

 

Where sR  is the Thermosolutal Rayliegh number, 3p  is the thermosolutal Prandtl 

number, lP  is the medium permeability,   is the porosity and F is the couple stress 

parameter. The result is important since it hold for all wave numbers and for any 

arbitrary combination of free and rigid boundaries at the top and bottom of the fluid. A 

similar characterization theorem is also proved for Stern type of configuration. 

Key Words: Thermal convection; Couple-Stress Fluid; PES; Rayleigh number; 

thermosolutal Rayleigh number  
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INTRODUCTION 

The theoretical and experimental results on thermal 

convection in a fluid layer, in the absence and presence of 

rotation and magnetic field have been given by 

Chandrasekhar [1]. The buoyancy force can arise not only 

from density differences due to variations in temperature 

but also from those due to variations in solute 

concentration. The problem of thermohaline convection in 

a layer of fluid heated from below and subjected to a 

stable salinity gradient has been considered by Veronis 

[2]. Double-diffusive convection problems arise in 
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oceanography (salt fingers occur in the ocean when hot 

saline water overlies cooler fresher water which believed 

to play an important role in the mixing of properties in 

several regions of the ocean), limnology and engineering. 

The migration of moisture in fibrous insulation, 

bio/chemical contaminants transport in environment, 

underground disposal of nuclear wastes, magmas, 

groundwater, high quality crystal production and 

production of pure medication are some examples where 

double-diffusive convection is involved. Examples of 

particular interest are provided by ponds built to trap 

solar heat Tabor and Matz [2] and some Antarctic lakes 

Shirtcliffe[4]. The physics is quite similar in the stellar case 

in that helium acts like salt in raising the density and in 

diffusing more slowly than heat. The conditions under 

which convective motions are important in stellar 

atmospheres are usually far removed from consideration 

of a single component fluid and rigid boundaries, and 

therefore it is desirable to consider a fluid acted on by a 

solute gradient and free boundaries. 

 The flow through porous media is of considerable interest 

for petroleum engineers, for geophysical fluid dynamists 

and has importance in chemical technology and industry. 

An example in the geophysical context is the recovery of 

crude oil from the pores of reservoir rocks. Among the 

applications in engineering disciplines one can find the 

food processing industry, chemical processing industry, 

solidification and centrifugal casting of metals. Such flows 

has shown their great importance in petroleum 

engineering to study the movement of natural gas, oil and 

water through the oil reservoirs; in chemical engineering 

for filtration and purification processes and in the field of 

agriculture engineering to study the underground water 

resources, seepage of water in river beds. The problem of 

thermosolutal convection in fluids in a porous medium is 

of importance in geophysics, soil sciences, ground water 

hydrology and astrophysics. The study of thermosolutal 

convection in fluid saturated porous media has diverse 

practical applications, including that related to the 

materials processing technology, in particular, the melting 

and solidification of binary alloys. The development of 

geothermal power resources has increased general 

interest in the properties of convection in porous media. 

The scientific importance of the field has also increased 

because hydrothermal circulation is the dominant heat-

transfer mechanism in young oceanic crust Lister[5]. 

Generally it is accepted that comets consists of a dusty 

‘snowball’ of a mixture of frozen gases which in the 

process of their journey changes from solid to gas and vice 

- versa. The physical properties of comets, meteorites and 

interplanetary dust strongly suggest the importance of 

porosity in the astrophysical context Mc Donnel [6]. The 

effect of a magnetic field on the stability of such a flow is 

of interest in geophysics, particularly in the study of 

Earth’s core where the Earth’s mantle, which consists of 

conducting fluid, behaves like a porous medium which can 

become convectively unstable as a result of differential 

diffusion. The other application of the results of flow 

through a porous medium in the presence of a magnetic 

field is in the study of the stability of a convective flow in 

the geothermal region. Also the magnetic field in double-

diffusive convection has its importance in the fields of 

engineering, for example, MHD generators and 

astrophysics particularly in explaining the properties of 

large stars with a helium rich core. Stommel and Fedorov 

[7] and Linden [8] have remarked that the length scales 

characteristics of double-diffusive convective layers in the 

ocean may be sufficiently large that the Earth’s rotation 

might be important in their formation. Moreover, the 

rotation of the Earth distorts the boundaries of a 

hexagonal convection cell in a fluid through a porous 

medium and the distortion plays an important role in the 

extraction of energy in the geothermal regions. Brakke [9] 

explained a double - diffusive instability that occurs when 

a solution of a slowly diffusing protein is layered over a 

denser solution of more rapidly diffusing sucrose. Nason 

et al. [10] found that this instability, which is deleterious 

to certain biochemical separations, can be suppressed by 

rotation in the ultracentrifuge.  

The theory of couple-stress fluid has been formulated by 

Stokes [11]. One of the applications of couple-stress fluid 

is its use to the study of the mechanisms of lubrications of 

synovial joints, which has become the object of scientific 

research. A human joint is a dynamically loaded bearing 

which has articular cartilage as the bearing and synovial 

fluid as the lubricant. When a fluid film is generated, 
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squeeze - film action is capable of providing considerable 

protection to the cartilage surface. The shoulder, ankle, 

knee and hip joints are the loaded – bearing synovial 

joints of the human body and these joints have a low 

friction coefficient and negligible wear. Normal synovial 

fluid is a viscous, non-Newtonian fluid and is clear or 

yellowish. According to the theory of Stokes [11], couple-

stresses appear in noticeable magnitudes in fluids with 

very large molecules. Since the long chain hyaluronic acid 

molecules are found as additives in synovial fluids, Walicki 

and Walicka [12] modeled the synovial fluid as a couple-

stress fluid. The synovial fluid is the natural lubricant of 

joints of the vertebrates. The detailed description of the 

joint lubrication has very important practical implications. 

Practically all diseases of joints are caused by or 

connected with malfunction of the lubrication. The 

efficiency of the physiological joint lubrication is caused by 

several mechanisms. The synovial fluid is due to its 

content of the hyaluronic acid, a fluid of high viscosity, 

near to gel. Goel et al. [13] have studied the 

hydromagnetic stability of an unbounded couple-stress 

binary fluid mixture under rotation with vertical 

temperature and concentration gradients. Sharma et al. 

[14] have considered a couple - stress fluid with 

suspended particles heated from below. In another study, 

Sunil et al. [15] have considered a couple- stress fluid 

heated from below in a porous medium in the presence of 

a magnetic field and rotation. Kumar et al. [16] have 

considered the thermal instability of a layer of couple-

stress fluid acted on by a uniform rotation, and have 

found that for stationary convection the rotation has a 

stabilizing effect whereas couple-stress has both 

stabilizing and destabilizing effects. 

Pellow and Southwell [17] proved the validity of PES for 

the classical Rayleigh-Bénard convection problem. 

Banerjee et al [18] gave a new scheme for combining the 

governing equations of thermohaline convection, which is 

shown to lead to the bounds for the complex growth rate 

of the arbitrary oscillatory perturbations, neutral or 

unstable for all combinations of dynamically rigid or free 

boundaries and, Banerjee and Banerjee[19] established a 

criterion on characterization of non-oscillatory motions in 

hydrodynamics which was further extended by Gupta et al 

[20]. However no such result existed for non-Newtonian 

fluid configurations in general and in particular, for Rivlin-

Ericksen viscoelastic fluid configurations. Banyal [20] have 

characterized the oscillatory motions in couple-stress 

fluid.  

Keeping in mind the importance in geophysics, soil 

sciences, ground water hydrology, astrophysics and 

various applications mentioned above, the thermosolutal  

convection in couple-stress fluid in porous medium, this 

article attempts to study the couple-stress fluid 

convection of Veronis and Stern type configuration in a 

porous medium, and it has been established that the 

onset of instability in a Rivlin-Ericksen viscoelastic fluid 

heated from below in a porous medium of  Veronis [2] 

type configuration, cannot manifest itself as oscillatory 

motions of growing amplitude if the Thermosolutal 

Rayliegh number sR , the thermosolutal Prandtl 

number
3p ,  the medium permeability 

lP , the porosity  

and the couple-stress parameter F satisfy the inequality 

 

 

 

for all wave numbers and for any arbitrary combination of 

free and rigid boundaries at the top and bottom of the 

fluid. A similar characterization theorem is also proved for 

Stern [22] type of configuration. 

FORMULATION OF THE PROBLEM AND PERTURBATION 

EQUATIONS 

 Here we consider an infinite, horizontal, 

incompressible couple-stress fluid layer of thickness d, 

heated and soluted from below so that, the temperatures, 

densities and solute concentrations at the bottom surface 

z = 0 are T0, 0 and C0 and at the upper surface z = d are Td, 

d and Cd respectively, and that a uniform temperature 

gradient  









dz

dT
 and a uniform solute gradient 

/
 











dz

dC
 are maintained. The gravity field )g,0,0(g 


, 

pervade the system. This fluid layer is assumed to be 

flowing through an isotropic and homogeneous porous 

medium of porosity  and medium permeability k1. 
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 Let p, , T, C, , 
/
, g, and ),,( wvuq


denote 

respectively, the fluid pressure, density, temperature, 

solute concentration, thermal coefficient of expansion, an 

analogous solvent coefficient of expansion, gravitational  

acceleration and fluid velocity. The equations expressing 

the conservation of momentum, mass, temperature, 

solute concentration and equation of state of couple-

stress fluid  (Chandrasekhar [1]; Stokes [11]) are 

 

 

 

,     (1) 

0. 


q ,         (2)  

TTq
t

T
E 2. 




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 ,         (4) 

 = 0 [1 -  (T-T0) + 
/
 (C-C0)],         (5) 

Where the suffix zero refers to values at the reference 

level z = 0 and in writing equation (1), use has been made 

of Boussinesq approximation. Here E = 













i

ss

C

C

0

)1(



 is a constant and E

/
 is a constant 

analogous to E but corresponding to solute rather that 

heat; s, Cs and o , Ci stand for density and heat capacity 

of solid (porous matrix) material and fluid, respectively. 

The kinematic viscosity , couple-stress viscosity 
/
, the 

thermal diffusivity   and the solute diffusivity 
/ are all 

assumed to be constants. 

 The steady state solution is  




),,( wvuq (0,0,0), T = T0-z, C = C0
 
 - 

/
z,  

 = 0 (1+ z - 
/


/
z).              (6) 

Here we use linearized stability theory and normal mode 

analysis method. Consider a small perturbation on the 

steady state solution, and let p, , ,  and ),,( wvuq


 

denote, respectively, the perturbations in pressure p, 

density , temperature T, solute concentration C and 

velocity )0,0,0(


q . The change in density, caused 

mainly by the perturbations  and  in temperature and 

concentration, is given by 

 = - 0 (   
/
 ).    (7) 

Then the linearized perturbation equations become 



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,  (8) 



 q.  = 0     (9) 


 2



w

t
E ,                                                 (10) 


 2/// 



w

t
E .                                            (11)                                                                                                                                                                                                                                                                    

NORMAL MODES ANALYSIS   

 Analyzing the disturbances into normal modes, 

we assume that the perturbation quantities are of the 

form 

      )(,,,, zzzWw   exp(ikxx + ikyy + nt),                                   

(12) 

where kx, ky are the wave numbers along the x- and y- 

directions respectively, k= ( 22
yx kk  ) is the resultant 

wave number and n is the growth rate which is, in general, 

a complex constant. )(),( zzW   and )(z  are the 

functions of z only. 

Using (12), equations (8)-(11), within the framework of 

Boussinesq approximations, in the non-dimensional form 

transform to 
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Where we have introduced new coordinates  ',',' zyx  = 

(x/d, y/d, z/d) in new units of length d and '/ dzdD  . 

For convenience, the dashes are dropped hereafter. Also 
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thermal Prandtl number;, 
'3




p  is the thermosolutal 

Prandtl number; 
2

1

d

k
Pl   is the dimensionless medium 

permeability, 


 )/( 2

0

' d
F  , is the dimensionless 

couple-stress parameter;  


 4dg
R  , is the thermal 

Rayleigh number and 



'

4'' dg
Rs   is the 

thermosolutal Rayleigh number. Also we have 

Substituted
WW , 



 2d
, 

/

2'



 d
 

and dDD 
, and dropped    for convenience. 

We now consider the cases where the boundaries are 

rigid-rigid or rigid-free or free-rigid or free-free at z = 0 

and z = 1 respectively, as the case may be, and maintained 

at constant temperature and solute concentration. Then 

the perturbations in the temperature and solute 

concentration are zero at the boundaries. The appropriate 

boundary conditions with respect to which equations (13)-

-(15), must possess a solution are  W = 0 =  ,  on 

both the horizontal boundaries,                                                       

DW = 0,  on a rigid boundary,                                                                               

02 WD ,  on a dynamically free boundary, (16) 

Equations (13)-(15), along with boundary conditions (16), 

pose an eigenvalue problem for   and we wish to 

characterize i , when 0r . 

We first note that sinceW ,  and   satisfy 

)1(0)0( WW  , )1(0)0(  and  

)1(0)0(    in addition to satisfying to governing 

equations and hence we have from the Rayleigh-Ritz 

inequality Schultz [23]  

  

1

0

22

1

0

2
dzWdzDW  ;  

1

0

22

1

0

2
dzdzD    

And  

1

0

22

1

0

2
dzdzD        (17)    

 Further, for )1(0)0( WW  , Banerjee et al  24   have 

shown that 
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1

0

22

1

0

2
2 dzDWdzWD  .                (18)                                                                                                                                                           

MATHEMATICAL ANALYSIS 

We prove the following lemma: 

Lemma 1:  For any arbitrary oscillatory perturbation, 

neutral or unstable 

                                

   


1

0

2

222

1

0

222

)(

1
dzDW

a
dzaD


. 

Proof: Multiplying equation (14) by 
  (the complex 

conjugate of  ), integrating by parts each term of the 

resulting equation on the right hand side for an 

appropriate number of times and making use of boundary 

condition on   namely )1(0)0(  , it follows 

that 

                                    
(Utilizing Cauchy-Schwartz-inequality), 

So that by using inequality (17) and the fact that 0r , 

we obtain from the above that 

                                                                                                  
 And thus, we get   

,    (20)                                 
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Since 0r  and 01p , hence inequality (19) on 

utilizing (20) and (17), gives 

,                                                                   

(21)  

This completes the proof of lemma 1. 

Lemma 2:  For any arbitrary oscillatory perturbation, 

neutral or unstable 

                                

. 

Proof: Multiplying equation (15) by 
  (the complex 

conjugate of  ), integrating by parts each term of the 

resulting equation on the right hand side for an 

appropriate number of times and making use of boundary 

condition on   namely )1(0)0(  , it follows that 

Real part 

of

,       (22) 

                                    (Utilizing Cauchy-Schwartz-inequality), 

So that by using inequality (17) and the fact that 0r , 

we obtain from the above that 
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 And thus, we get   
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,                                                                                 

(23) 

Since 0r  and 01p , hence inequality (22) on 

utilizing (23) and (17), gives 
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

1

0

2

222

1

0

222

)(

1
dzDW

a
dzaD


,                                                                  

(24)  

This completes the proof of lemma 2. 

Now we prove the following theorems: 

Theorem 1: : If  R  0 , 0sR , F  0, 0lP , 

01p , 03p , 0r , 0i and RRs  , then the 

necessary condition for the existence of non-trivial 

solution   ,,W  of  equations  (13) – (15), together 

with boundary conditions (16)  is that 
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Proof: Multiplying equation (13) by  
W  (the complex 

conjugate of W) throughout and integrating the resulting 

equation over the vertical range of z, we get 
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Taking complex conjugate on both sides of equation (14), 

we get 

    WEpaD 1
22

,      (26) 

Therefore, using (26), we get  

      
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(27) 

Taking complex conjugate on both sides of equation (15), 

we get 

    WpEaD 3
'22

,                                                                                            

(28) 

Therefore, using (28), we get  
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Substituting (27)  and (29), in the right hand side of 

equation (25), we get 

 

 

















1

0

**

1

222

1

0

22*222

1

0

)(
1

dzEpaDRa

WdzaDW
P

WdzaDW
P

F

ll







                                          

 

1

0

**

3

/222 )( dzpEaDaRs    (30) 

Integrating the terms on both sides of equation (30) for an 

appropriate number of times and making use of the 

appropriate boundary conditions (16), we get  

 

 

















1

0

222

1

0

2422
2

2

1

2

dzWaDW
P

dzWaDWaWD
P

F

l

l




 

 

 







1

0

2*

3

/2222

1

0

2*

1

2222

dzpEaDaR

dzEpaDRa

s 



, (31)                   

now equating real and imaginary parts on both sides of 

equation (31), and cancelling )0(i  throughout from 

imaginary part, we get 

 

 

















1

0

222

1

0

2422
2

2

1

2

dzWaDW
P

dzWaDWaWD
P

F

l

r

l




 

 

 







1

0

2

3

/2222

1

0

2

1

2222

dzpEaDaR

dzEpaDRa

rs

r





,          (32) 

and 

                                  
(33)                                                                                                   

of which the equation (32) can be rearranged in the form 

    











1

0

222
1

0

2422
2

2 1
2 dzWaDW

P
dzWaDWaWD

P

F

l

r

l 



 

   

















1

0

2

3

/2

1

0

2

1

2

1

0

2222

1

0

2222

dzpEaRdzEpRa

dzaDaRdzaDRa

sr

s



,(34) 

The equation (33) together with 0r , yields the 

inequality 

0

1

0

2

3

/2

1

0

2

1

2 







  dzpEaRdzEpRa sr ,  (35) 

Now, utilizing the inequality (17), we have 

   

1

0

222

1

0

222
)( dzadzaD  ,         (36) 

While from the equation (33) on utilizing (17), we get 

 

1

0

2

3

/2

1

0

2 1
dzDW

pEaR
dz

s 
,                       (37) 

So that using inequality (37), we can write the inequality 

(36) as 

  




1

0

2

3

/2

221

0

222 )(
dzDW

pEaR

a
dzaD

s 


,   (38) 

Now we prove the following theorems: 

Now, if permissible let RRs  , Then in that case we 

derive from equation (34) and utilizing the inequalities 

(17), (18), (21) and (38), we get  

0
)(

1
)( 1

1

0

2

222

2

3

/

22 























  IdzDW
a

aR

pEP

F
a s

l 
 ,            (39)                                           
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Where 

  











1

0

222
2

1

1
dzWaDW

PP

Fa
I

l

r

l 


, is 

positive definite. Therefore, we must have 

  

















3

/2

2222 1)(

pEP

F

a

a
R

l

s .                      (40) 

and thus we necessarily have 

  













3

/

4 1
4

pEP

F
R

l

s                                              (41) 

Since the minimum value of 
 

2

2222

a

a
 is

44 at 

022  a . 

Hence, if 

 0r  and 0i , then 













3

/

4 1
4

pEP

F
R

l

s ,                (42) 

And this completes the proof of the theorem. 

Presented otherwise from the point of view of existence 

of instability as stationary convection, the above Theorem 

1, can be put in the form as follow:- 

Corollary 1: The sufficient condition for the onset of 

instability as a non-oscillatory motions of non-growing 

amplitude in a thermosolutal couple-stress fluid 

configuration of Veronis type in a porous medium heated 

from below is that, 













3

/

4 1
4

pEP

F
R

l

s , where 

sR  is the Thermosolutal Rayliegh number, 3p  is the 

thermosolutal Prandtl number,
lP  is the medium 

permeability,   is the porosity and F is the couple-stress 

parameter, for any arbitrary combination of free and rigid 

boundaries at the top and bottom of the fluid  

or 

The onset of instability in a thermosolutal couple-stress 

fluid configuration of Veronis type in a porous medium 

heated from below, cannot manifest itself as oscillatory 

motions of growing amplitude if the Thermosolutal 

Rayliegh number
sR , the thermosolutal Prandtl 

number
3p ,  the medium permeability

lP , the porosity  

and the couple-stress parameter F, satisfy the inequality 













3

/

4 1
4

pEP

F
R

l

s  , for any arbitrary 

combination of free and rigid boundaries at the top and 

bottom of the fluid  

The sufficient condition for the validity of the ‘PES’ can be 

expressed in the form: 

Corollary 2: If  ,,W , 
ir i  , 0r  is a 

solution  of  equations  (13) – (15) together with boundary 

conditions (16) and   













3

/

4 1
4

pEP

F
R

l

s   , 

Then 0i .  

In particular, the sufficient condition for the validity of the 

‘exchange principle’ i.e., 00  ir   

if













3

/

4 1
4

pEP

F
R

l

s . 

In the context of existence of instability in ‘oscillatory 

modes’ and that of ‘overstability’ in the present 

configuration of Veronis type, we can state the above 

theorem as follow:- 

Corollary 3: The necessary condition for the existence of 

instability in ‘oscillatory modes’ and that of ‘overstability’ 

in a thermosolutal couple-stress fluid configuration of 

Veronis type in a porous medium heated from below is 

that the Thermosolutal Rayliegh number sR , the 

thermosolutal Prandtl number 3p ,  the medium 

permeability lP , the porosity  and the couple-stress 

parameter F must satisfy the 

inequality













3

/

4 1
4

pEP

F
R

l

s , for any arbitrary 

combination of free and rigid boundaries at the top and 

bottom of the fluid  
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A similar theorem can be proved for thermosolutal 

convection in couple-stress Viscoelastic fluid configuration 

of Stern type in a porous medium as follow:  

Theorem 2: If  R  0 , 0sR , F  0, 0lP , 

01p , 03p , 0r , 0i and sRR  then the 

necessary condition for the existence of non-trivial 

solution   ,,W  of  equations  (13) – (15), together 

with boundary conditions (16)  is that 

                                













1

4 1
4

EpP

F
R

l

 .   

Proof: Replacing R and sR  by  R   and  sR  , 

respectively in equations (13) – (15) and proceeding 

exactly as in Theorem 1 and utilizing the inequality (24), 

we get the desired result.   

Presented otherwise from the point of view of existence 

of instability as stationary convection, the above Theorem 

2, can be put in the form as follow:- 

Corollary 4: The sufficient condition for the onset of 

instability as a non-oscillatory motions of non-growing 

amplitude in a thermosolutal couple-stress fluid 

configuration of Stern type in a porous medium is that, 













1

4 1
4

EpP

F
R

l

, where R  is the Thermal 

Rayliegh number, 1p  is the thermal Prandtl number, lP  is 

the medium permeability,   is the porosity and F is the 

couple-stress parameter, for any arbitrary combination of 

free and rigid boundaries at the top and bottom of the 

fluid  

or 

The onset of instability in a thermosolutal couple-stress 

fluid configuration of Stern type in a porous medium, 

cannot manifest itself as oscillatory motions of growing 

amplitude if the Thermal Rayliegh number R , the thermal 

Prandtl number 1p ,  the medium permeability lP , the 

porosity  and the couple-stress parameter F, satisfy the 

inequality 













1

4 1
4

EpP

F
R

l

 , for any arbitrary 

combination of free and rigid boundaries at the top and 

bottom of the fluid  

The sufficient condition for the validity of the ‘PES’ can be 

expressed in the form: 

Corollary 5: If  ,,W , 
ir i  , 0r  is a 

solution  of  equations  (13) – (15) and  

                                 













1

4 1
4

EpP

F
R

l

 , 

Then 0i .  

In particular, the sufficient condition for the validity of the 

‘exchange principle’ i.e., 00  ir   

if













1

4 1
4

EpP

F
R

l

. 

In the context of existence of instability in ‘oscillatory 

modes’ and that of ‘overstability’ in the present 

configuration of Stern’s type, we can state the above 

theorem as follow:- 

Corollary 6: The necessary condition for the existence of 

instability in ‘oscillatory modes’ and that of ‘overstability’ 

in a thermosolutal couple-stress fluid configuration of 

Stern type in a porous medium is that the Thermal 

Rayliegh number R , the thermal Prandtl number 1p ,  the 

medium permeability lP , the porosity  and the couple-

stress parameter F must satisfy the 

inequality













1

4 1
4

EpP

F
R

l

, for any arbitrary 

combination of free and rigid boundaries at the top and 

bottom of the fluid.  

CONCLUSIONS 

Theorem 1 mathematically established that the onset of 

instability in a thermosolutal couple-stress fluid 

configuration of Veronis type, cannot manifest itself as 

oscillatory motions of growing amplitude if the 

Thermosolutal Rayliegh number sR , the thermosolutal 

Prandtl number 3p ,  the medium permeability lP , the 

porosity  and the couple-stress parameter F satisfy the 
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inequality













3

/

4 1
4

pEP

F
R

l

s , for any arbitrary 

combination of free and rigid boundaries at the top and 

bottom of the fluid  

The essential content of the theorem 1, from the point of 

view of linear stability theory is that for the thermosolutal 

configuration of Veronis type of couple-stress fluid of 

infinite horizontal extension, for any arbitrary 

combination of free and rigid boundaries at the top and 

bottom of the fluid, an arbitrary neutral or unstable 

modes of the system are definitely non-oscillatory in 

character if













3

/

4 1
4

pEP

F
R

l

s , and in 

particular PES is valid.  

The similar conclusions are drawn for the thermosolutal 

configuration of Stern type of couple-stress fluid of infinite 

horizontal extension, for any arbitrary combination of free 

and rigid boundaries at the top and bottom of the fluid 

from Theorem 2. 
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