Vol.1., Issue.3., 2013

RESEARCH ARTICLE

ISSN: 2321-7758

OBSERVATIONS ON THE HYPERBOLA $y^2 = 30x^2 + 1$

M.A.GOPALAN, S.VIDHYALAKSHMI, D.MAHESWARI

Department of Mathematics, Shrimati Indira Gandhi College, Trichy

Article Revised on: 19/10/2013

Article Accepted on: 20/10/2013

ABSTRACT

The binary quadratic equation $y^2 = 30x^2 + 1$ is considered and a few interesting properties among the solutions are presented. Employing the integral solutions of the equation under consideration, a special pythogorean triangle is obtained.

Keywords: binary quadratic, hyperbola, integral solutions, pell equation

2010 Mathematics Subject Classification: 11D09

D.MAHESWARI

INTRODUCTION

The binary quadratic equation of the form $y^2 = Dx^2 + 1$, where D is a non-square positive integer, has been studied by various mathematicians for its non-trivial integral solutions when D takes different integral values [1,2,3,4]. In [5] infinitely many pythogorean triangles in each of which hypotenuse is four times the product of the generators added with unity are obtained by employing the non-integral solutions of binary quadratic equation $y^2 = 3x^2 + 1$. In [6], a special pythogorean triangle is obtained by employing the integral solutions of $y^2 = 10x^2 + 1$. In [7], different patterns of infinitely many pythogorean triangles are obtained by employing the non-trivial solutions of $y^2 = 12x^2 + 1$. In this context one may also refer [8-14]. These results have motivated us to search for the integral solutions of yet another binary quadratic equation $y^2 = 30x^2 + 1$ representing a hyperbola. A few interesting properties among the solutions are presented. Employing the integral solutions of the equation under consideration, a special pythogorean triangle is obtained.

Notations Used:

 $t_{m,n}$ – Polygonal number of rank n with size m.

 P_n^m – Pyramidal number of rank n with size m.

 $\ensuremath{\mathsf{CP}_n}^m$ – Centered pyramidal number of rank n with size m.

 $CP_{m,n}$ – Centered polygonal number of rank n with size m.

GNO_n – Gnomonic number of rank n.

S_n – Star number of rank n.

Vol.1., Issue.3., 2013

Articles available online http://www.ijoer.in

METHOD OF ANALYSIS

The	binary	quadratic	equation	representing	hyperbola	under	consideration	is
				$y^2 = 30x^2 +$	1		(1)	
whose (general solu	ution (x _n ,y _n) is _§	given by x_n	$=\frac{g}{2\sqrt{30}}$, $y_n=\frac{f}{2}$	where			

$$f = (11 + 2\sqrt{30})^{n+1} + (11 - 2\sqrt{30})^{n+1} \text{ and}$$

$$g = (11 + 2\sqrt{30})^{n+1} - (11 - 2\sqrt{30})^{n+1}, n = 0, 1, 2, ...$$

The recurrence relations satisfied by x and y are given by

$$y_{n+2} - 22y_{n+1} + y_n = 0, y_0 = 11, y_1 = 241$$

 $x_{n+2} - 22x_{n+1} + x_n = 0, x_0 = 2, x_1 = 44$

Some numerical examples of x and y satisfying (1) are given in the following table:

n	x _n	Уn
0	2	11
1	44	241
2	966	5291
3	21208	116161
4	465610	2550251
5	10222212	55989361
6	224423054	1229215691
7	4927084976	26986755841

From the above table we observe some interesting properties:

- 1. X_n is always even.
- 2. Y_n is always odd.
- 3. $y_{2n} \equiv 0 \mod(11)$.
- 4. $x_{2n+1} \equiv 0 \mod(44)$.

A few interesting properties between the solutions and special numbers are given below:

- 1. $22y_{2n+2} 120x_{2n+2} + 2$ is a perfect square.
- 2. $6(22y_{2n+2} 120x_{2n+2} + 2)$ is a nasty number.
- 3. $22y_{3n+3} 120x_{3n+3} + 3(22y_{n+1} 120x_{n+1})$ is a cubic integer.
- 4. $S_f = 6[22(y_{2n+2} y_{n+1}) 120(x_{2n+2} x_{n+1})] + 13.$
- 5. $GNO_f = 44y_{n+1} 240x_{n+1} 1.$ $6P_f^m = 22[(m-2)y_{3n+3} + 3y_{2n+2} + (2m-1)y_{n+1}] - 120[(m-2)x_{3n+3} + 3y_{2n+2} + (2m-1)y_{n+1}] - 120[(m-2)x_{3n+3} + 3y_{2n+2} + (2m-1)y_{n+1}] - 120[(m-2)x_{3n+3} + 3y_{2n+3} + 3y_{2n+3}$
- 6. $3x_{2n+2} + (2m-1)x_{n+1}] + 6, m$ 3.
- 7. $6CP_f^m = 22[m(y_{3n+3} + 2y_{n+1}) + 6y_{n+1}] 120[m(x_{3n+3} + 2x_{n+1}) + 6x_{n+1}].$

$$2t_{m,f} = 22[(m-2)y_{2n+2} + (4-m)y_{n+1}] - 120[(m-2)x_{2n+2} + (4-m)x_{n+1}] + 2m - 4, m \quad 3.$$

 $2CP_{mf} = m[(m-2)(22y_{2n+2} - 120x_{2n+2}) + (4-m)(22y_{n+1} - 120x_{n+1}) + (4-m)(22y_{n+1}) + (4-m)(22y_{n+1}) + (4-m)(2$ 2(m-2)]+2m3

10. Let $Y = 22y_{n+1} - 120x_{n+1}$ and $X = 2y_{n+1} - 11x_{n+1}$. Then the pair (X,Y) satisfies the hyperbola $Y^2 = 120X^2 + 4$.

REMARKABLE OBSERVATIONS

- 1. Let α be any non-zero positive integer such that $\alpha_s = \frac{y_s 1}{2}$, s = 0, 1, 2, ..., it is seen that $40t_{3, \alpha_s}$ is a Nasty Number.
- 2. Let p, q be the generators of the pythogorean triangle $T(\propto, \beta, \gamma)$ with

 $\propto = 2pq, \beta = p^2 - q^2, \ \gamma = p^2 + q^2, p > q > 0.$ Let $q_s = x_s, p_s = x_s + y_s$. Then T satisfies the following relations.

- $\propto -15\beta + 14\gamma + 1 = 0.$ (i)
- $\frac{4A}{p} + 1 = 16\beta 15\gamma$ where A and P represents the area and perimeter of the (ii) pythogorean triangle

$$16 \propto -\gamma = \frac{60A}{p} - 1.$$

CONCLUSION

(iii)

To conclude, one may search for other choices of hyperbolas for patterns of solutions and their corresponding properties.

REFERENCES:

- [1]. Dickson L.E., "History of Theory of Numbers", vol-2, Chelsea Publishing Company, New York, 1952
- [2]. Mordel L. J., "Diophantine Equations", Academic Press, New York, 1969
- [3]. Telang S. J., "Number Theory", Tata Mcgraw hill Publishing Company ltd, New Delhi, 2000
- [4]. David Burton, "Elementary Number Theory", Tata Mcgraw hill Publishing company ltd, New Delhi, 2002
- [5]. Gopalan M. A and Janaki G, "Observations on $y^2=3x^2+1$ ", Acta Ciancia Indica, XXXIVM, No.2, 693-696, 2008
- [6]. Gopalan M. A and Sangeetha G, "A Remarkable observation on $y^2 = 10x^2 + 1$ ", Impact Journal of Sciences and Technology, No.4, 103-106, 2010
- [7]. Gopalan M . A and Palanikumar R, "Observation on $y^2=12x^2+1$ ", Antarctica Journal of Mathematics, 8(2), 149-152, 2011
- [8]. Gopalan M. A, Vijayalakshmi S and Devibala S, "On the Diophantine Equation $3x^2+xy=14$ ", Acta Ciencia Indica, vol-XXXIIIM, No.2, 645-648, 2007
- [9]. Gopalan M. A and Vijayasankar R, "Observation on the Integral solutions of $y^2=5x^2+1$ ", Impact Journal of Science and Technology, vol No: 4, 125-129, 2010
- [10]. Gopalan M .A and Yamuna R. S, "Remarkable observation on the binary quadratic equation $y^2 = (k^2 + 1)x^2 + 1$, $k \in Z - \{0\}^n$, Impact Journal of Science and Technology, vol. No. 4, 61-65, 2010
- [11]. Gopalan M. A and Sivagami B, "Observations on the integral solutions of $y^2=7x^2+1$ ", Antarctica Journal of Mathematics, 7(3), 291-296, 2010
- [12]. Gopalan M. A and Vijayalakshmi R, "Special pythogorean triangle generated through the integral solutions of the equation $y^2 = (k^2 - 1)x^2 + 1^{"}$, Antarctica Journal of Mathematics, 7(5), 503-507, 2010
- [13]. Gopalan M. A and Srividhya G, "Relations among M-gonal Number through the equation $y^2=2x^2+1^{\prime\prime}$, Antarctica Journal of Mathematics 7(3), 363-369, 2010
- [14]. Gopalan M. A, Vijayalakshmi S, Usha Rani T. R, and Mallika S, "Observations on $y^2=12x^2-3$ ", Bessel Journal of Math, 2(3), 153-158, 2012