
International journal of Engineering Research-Online

A Peer Reviewed International Journal
Articles available online http://www.ijoer.in

Vol.1., Issue.3., 2013

407 J.K.JEEVITHA et al

GLOBAL LOAD DISTRIBUTION USING SKIP GRAPH, BATON AND CHORD

J.K.JEEVITHA, B.KARTHIKA*

Information Technology,PSNA College of Engineering & Technology, Dindigul, India

 J.K.JEEVITHA

 B.KARTHIKA

INTRODUCTION

 Distributed systems have emerged as an appealing solution for sharing and locating resources over

the Internet. Several Distributed systems have been successfully deployed for a wide range of applications. In

fact, a recent study showed that Distributed systems dominate up to 70 percent of Internet traffic. Thus, it is

critical to design a Distributed system that is scalable and efficient. To build an efficient Distributed system,

researchers have turned to structured architectures, which offer a bound on search performance as well as

completeness of answers. However, one key challenge that has not been adequately addressed in the

literature is that of load balancing. In a large-scale Distributed system, nodes often have different resource

capabilities (storage, CPU, and bandwidth)[4]. Hence, it is desirable that each node has a load proportional to

its resource capability.

RESEARCH ARTICLE ISSN: 2321-7758

Article Received: 25/11/2013 Article Revised on:03/12/2013 Article Accepted on:07/12/2013

ABSTRACT

Over the past few years, Distributed systems have rapidly grown in popularity and

have become a dominant means for sharing resources. In these systems, load

balancing is a key challenge because nodes are often heterogeneous. While

several load-balancing schemes have been proposed in the literature, these

solutions are typically ad hoc, heuristic based, and localized. In this paper, the

present a general framework, HiGLOB, for global load balancing in Distributed

systems. Each node in HiGLOB has two key components: 1) a histogram manager

maintains a histogram that reflects a global view of the distribution of the load in

the system, and 2) a load-balancing manager that redistributes the load whenever

the node becomes overloaded or underloaded. The exploit the routing metadata

to partition the Distributed network into non overlapping regions corresponding

to the histogram buckets. The propose mechanisms to keep the cost of

constructing and maintaining the histograms low. Finally, we demonstrate the

effectiveness of HiGLOB by instantiating it over three existing structured

Distributed systems: Skip Graph, BATON and Chord.

Key words— framework, load balancing, histogram, DHT, Distributed network,

Skip Graph, BATON, Chord.

International journal of Engineering Research-Online

A Peer Reviewed International Journal
Articles available online http://www.ijoer.in

Vol.1., Issue.3., 2013

408 J.K.JEEVITHA et al

 The basic approach to load balancing is to find a pair of nodes—one that is heavily loaded and the other

lightly loaded—and redistribute the load across these two nodes. However, it is far from trivial to (globally)

balance the load in a Distributed system. There are two main issues in Distributed load balancing: 1) how to

determine if a node is overloaded or underloaded, and 2) if so, how to find a suitable partner node with which

to redistribute the load. The main problem with this method is that it can only guarantee the global load

balance of the system with some probability. On the other hand suggests a use of a separate DHT such as Skip

Graph to maintain the nodes’ load distribution. Nevertheless, this solution still has a problem: it incurs a

substantial cost for maintaining complete information about the load at every node in the system.

In this paper, we propose a new framework, called Histogram-based Global Load Balancing (HiGLOB) to

facilitate global load balancing in structured Distributed systems. Each node P in HiGLOB has two key

components. We exploit the routing metadata to partition the Distributed network into nonoverlapping

regions corresponding to the histogram buckets. We propose mechanisms to keep the cost of constructing and

maintaining the histograms low. We further show that our scheme can control and bound the amount of load

imbalance across the system. Finally, we demonstrate how HiGLOB can balance the load in three existing

structured Distributed systems—Skip Graph, BATON, and Chord [5][7][8]. To summarize, this paper makes the

following contributions:

 It proposes a general framework that uses histograms maintain a global view of the load distribution

on structured Distributed systems. These histograms enable efficient load-balancing algorithms that

can effectively control the amount of load imbalance across the system to globally balance the load.

 We suggest two techniques that effectively reduce the cost of constructing and maintaining the

histograms.

 We show how to apply the general framework to three well-known structured Distributed systems:

Skip Graph , BATON, and Chord.

We present experimental results that characterize the effectiveness and efficiency of the proposed techniques

RELATED WORK

 Load balancing across multiple nodes has been widely studied in the context of distributed systems.

Techniques that are based on static and/or dynamic methods have been developed . In static methods, load

balancing is triggered when either a new node joins the system or an existing node leaves the system. When a

new node joins the system, it attempts to find a heavily loaded node and take over some of the load from that

node. On the other hand, when a node leaves the system, it searches for a lightly loaded node to pass its

current load to that node. In a different approach, dynamic methods operate when nodes that have already

joined the system become overloaded or under loaded.

 Load balancing can also be handled using a preventive mechanism that avoids load imbalance. In each peer

node keeps exactly the same logN virtual nodes. As a result, with high probability, the system is load balanced.

However, the cost of keeping additional virtual nodes at a peer is expensive. On the other hand, proposes that

for each piece of inserted data, multiple hash functions are used to find multiple nodes, and the most lightly

loaded node is selected to store the data. When a data item is deleted or searched, multiple hash functions are

also used to find the node storing the data. Nevertheless, this simple approach is not efficient since it incurs an

expensive cost for data insertion, data deletion, and data search.

THE HIGLOB FRAMEWORK

 In this section, we present the HiGLOB framework. We focus on the histogram and load-balancing

managers.

International journal of Engineering Research-Online

A Peer Reviewed International Journal
Articles available online http://www.ijoer.in

Vol.1., Issue.3., 2013

409 J.K.JEEVITHA et al

A. The Histogram Manager: The objective of the histogram manager is to maintain statistics about the load

distribution across the entire Distributed network. These statistics allow a node to know its own load status (in

comparison with other nodes in the system) and to identify its counterpart if global load balancing is triggered.

B. Histogram Structure: The histogram contains several buckets, each of which keeps statistical information

about the load of a group of nodes that is connected to P through a neighbor node. The statistical information

includes the current workload of CPU, storage, and bandwidth of nodes in the group. As a result, from the

histogram information, the system can balance the load of nodes according to any one of a variety of node

capabilities—storage, CPU, or bandwidth. Since histogram buckets have to be disjoint, different groups

belonging to different buckets Fig. 1 illustrates a histogram structure. A has six neighbor nodes, and hence,

its histogram contains six buckets corresponding to six nonoverlapping groups connected by six neighbor

nodes. To build this histogram structure, we need to be able to partition the Distributed network into several

disjoint groups. However, this is difficult since there may be multiple paths between two nodes. In other

words, a node may be connected to the histogram owner node through different neighbor nodes, and hence,

it can belong to different groups (violating the nonoverlapping constraint).

Fig. 1. Histogram structure

C. Histogram Construction and Maintenance: The load distribution histogram of a node is first constructed

when the node joins the system. Later, histogram values can be updated when the load distribution of the

system changes. To construct a histogram, a node needs information from all neighbor nodes connected to it.

To update a histogram or a bucket value, a node only needs updated information from the neighbor node

connected to the corresponding group of that bucket.

D. Improvement Techniques: While histograms are useful, the cost of constructing and maintaining them may

be expensive especially in dynamic systems. As a result, we introduce two techniques that reduce the

maintenance cost.

 Reduce the cost of constructing histogram.

 Reduce the cost of maintaining histogram

An example is shown in Fig. 2 in which a major change at node A may affect updating histograms at its

neighbor nodes B, C, D, E, F, and G first. After that, the update process may continue at C1 and C2.Clearly, if _

is set to a low value, it is still costly for updating histograms as the updating process may be triggered often.

On the other hand, if _ is set with a high value, the load imbalance between nodes maybe high because there

maybe a big difference between the real load value of a onoverlapping group and its stored value in the

histogram.

International journal of Engineering Research-Online

A Peer Reviewed International Journal
Articles available online http://www.ijoer.in

Vol.1., Issue.3., 2013

410 J.K.JEEVITHA et al

Fig. 2. Histogram update

E. The Load-Balancing Manager: In our framework, load balancing is done both statically when a new node

joins the system or an existing node leaves the system and dynamically when an existing node in the system

becomes overloaded or underloaded. In static load balancing, a new node needs to find a heavily loaded node

to join as an adjacent node while an existing node wishing to leave the system needs to find a lightly loaded

node to shed its workload[5][6][8]. On the other hand, dynamic load balancing is realized by either local load

balancing or network load balancing.

F. The General Framework: The first component contains overridden methods, which extend the original

methods for piggybacked histogram information. The other two components are the Histogram Manager,

which is in charge of managing histogram information, and the Load Balancing Manager, which has a

responsibility for load balancing among nodes in the system. These two components contain abstract methods

to be implemented depending on specific systems.

Fig. 3. The general framework

BATON: Balanced Tree Overlay Network (BATON) is a structure based on a binary balanced tree in which each

peer in the network maintains a node of the tree. A node has connections to other nodes by four different

kinds of links: a parent link pointing to the parent node; child links pointing to child nodes; adjacent links

pointing to adjacent nodes, which maintain adjacent ranges of values; and neighbor links pointing to selected

neighbor nodes, which are nodes at the same level, having distances equal to a power of two from the node. In

International journal of Engineering Research-Online

A Peer Reviewed International Journal
Articles available online http://www.ijoer.in

Vol.1., Issue.3., 2013

411 J.K.JEEVITHA et al

BATON, data stored at nodes is ordered increasingly from the left to the right of the tree. An example of

BATON is shown in Fig. 4.

Fig. 4. BATON structure

In BATON, when a node x processes a query, if the searched key does not fall into the range of values managed

by x, x forwards the query to the farthest neighbor node in the routing table, which is nearer to the searched

key. If there is no such neighbor node, x forwards the query to either a child (if it exists) or an adjacent node of

x in the search direction. In particular, if x is a leaf node without a full routing table on the search direction, x

always forwards the query to its parent node for processing

A. Histogram Structure: A difficulty arises in defining nonoverlapping groups for a histogram in BATON. The

search region, which is bounded by a query when it is sent from a node to its child, always, includes the

adjacent node of that node on the same search direction (the adjacent node is either a descendant node of the

child node or the child node itself). As a result, there is no way to define nonoverlapping groups connected by

both child link and adjacent link of a node at the same side. First, if a node does not have a child, the

nonoverlapping group, which contains nodes falling between the node and the first neighbor node on the

direction of the missing child, is connected by the adjacent node on that direction. For example, node J in Fig. 8

has a histogram with nonoverlapping groups connected by nodes B, E, H, I, K, L, and N (B and E are adjacent

nodes of J). The values are respectively 0.53, 0.56, 0.75, 0.61, 0.66, 0.61, and 0.65. Second,

if a node does not have full routing table, it always asks its parent to find a lightly or heavily loaded node as in

the search algorithm, and hence, it does not need to keep exact histogram values for this node.

B. Histogram Construction and Maintenance: The way histogram is constructed and maintained in BATON is

similar to that of Skip Graph. When a new node joins the system, all of its neighbor nodes have to calculate

and send the summary of load and capacity of themselves and all nodes following their position on the same

side of the new node from their histogram values. However, in BATON, the histogram values are not

recalculated right away if the new node does not have full routing tables. These values are kept until the node

has full routing tables. At that time, histogram values are recalculated. The histogram values of nonoverlapping

groups, which contain nodes falling between the node and the first neighbor node, are calculated with

additional information from histogram values of the parent node. When the load of a node is changed, it sends

updated information, which is calculated in the same way as in the process of histogram construction, to all of

its neighbor nodes.

International journal of Engineering Research-Online

A Peer Reviewed International Journal
Articles available online http://www.ijoer.in

Vol.1., Issue.3., 2013

412 J.K.JEEVITHA et al

Fig. 5. Histogram structure in BATON

CONCLUSION

 In this paper, we proposed a framework, HiGLOB, to enable global load balance for Distributed

systems. Each node in HiGLOB maintains the load information of nodes in the systems using histograms. This

enables the system to have a global view of the load distribution and hence facilitates global load

balancing.Even though the proposal is a general framework; it is possible to deploy different kinds of

Distributed systems on it. We demonstrated this by building three well-known structured Distributed systems:

Skip Graph, BATON, and Chord on our proposal. Our performance evaluation shows that our HiGLOB enabled

systems are superior over other methods.

REFERENCES

[1]. K.Aberer, “P-Grid: A Self-Organizing Access Structure for P2P Information Systems”, proc. Int”l conf.

Cooperative Information Systems(CoopIS),2001.

[2]. P.Ganesan, M.Bawa, and H.Garcia-Molina,”Online Balancing of Range-partitioned Data with

Application to Peer-to-Peer Systems,” Proc. very Large Databases conf.(VLDB ’04), pp.444-455,2004.

[3]. M. Adler, E. Halperin, R.M. Karp, and V.V. Vazirani, “A Stochastic Process on the Hypercube with

Application to peer-to-peer Networks,”proc. 35
th

 ACM Symp. Theory of computing (STOC ’03),pp. 575-

584,2003.

[4]. S. Saroiu, P.K. Gummadi, and S.D. Gribble, “A Measurement Study of Peer-to-Peer File Sharing

Systems,” Proc. MultimediaComputing and Networking Conf. (MMCN), 2002.

[5]. “Load Balancing in Structured P2P Systems,” Proc. Int’l Workshop Peer-to-Peer Systems (IPTPS), 2003.

[6]. D. Karger and M. Ruhl, “Simple Efficient Load Balancing Algorithms for Peer-to-Peer Systems,” Proc.

ACM Symp. Parallelism in Algorithms and Architectures (SPAA), 2004.

[7]. D. Karger and M. Ruhl, “Simple Efficient Load Balancing Algorithms for Peer-to-Peer Systems,” Proc.

Int’l Workshop Peerto Peer Systems (IPTPS), 2004.

[8]. B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, andStoica, “Load Balancing in Dynamic

Structured P2P Systems,”Proc. INFOCOM, 2004.

[9]. K. Kenthapadi and G.S. Manku, “Decentralized Algorithms Using Both Local and Random Probes for

P2P Load Balancing,” Proc.ACM Symp. Parallelism in Algorithms and Architectures (SPAA),2005.

[10]. G. Giakkoupis and V. Hadzilacos, “A Scheme for Load Balancing in Heterogenous Distributed

Hash Tables,” Proc. ACM Symp.Principles of Distributed Computing Conf. (PODC), 2005.

International journal of Engineering Research-Online

A Peer Reviewed International Journal
Articles available online http://www.ijoer.in

Vol.1., Issue.3., 2013

413 J.K.JEEVITHA et al

[11]. J. Ledlie and M. Seltzer, “Distributed, Secure Load Balancing with Skew, Heterogeneity, and

Churn,” Proc. INFOCOM, 2005.

[12]. S. Surana, B. Godfrey, K. Lakshminarayanan, R. Karp, and Stoica, “Load Balancing in Dynamic

Structured P2P Systems,” Performance Evaluation, vol. 63, no. 6, pp. 217-240, 2006.

