International Journal of Engineering Research-Online A Peer Reviewed International Journal Articles available online http://www.ijoer.in

Vol.2., Issue.1., 2014

RESEARCH ARTICLE

OBSERVATIONS ON $Z^2 = 3X^2 + Y^2$

K.MEENA¹ S.VIDHYALAKSHMI² M.A.GOPALAN³, S.PRIYA⁴

¹Former VC, Bharathidasan university, Trichy, Tamilnadu,

^{2,3}Professor, Department of Mathematics, Shrimati Indira Gandhi College, Trichy, Tamilnadu, India.

Article Received: 28/02/2014

Article Revised on: 10/03/2014

Article Accepted on:11/03/2014

S.PRIYA

ABSTRACT

The ternary quadratic equation given by $Z^2=3X^2+Y^2$ is considered. Employing its non-zero integral solutions, relations among few special polygonal numbers are determined.

INTRODUCTION

In [1-3], different patterns of m-gonal numbers are presented. In [4] explicit formulas for the rank of Triangular numbers which are simultaneously equal to Pentagonal, Decagonal and Dodecagonal numbers in turn are presented. In [5] the relations among the pairs of special m-gonal numbers generated through the solutions of the binary quadratic equations are determined. In [6] the relations among few polygonal and centered polygonal numbers are determined.

In this communication, we consider the ternary quadratic equation given by $Z^2 = 3X^2 + Y^2$ and obtain the relations among the pairs of special m-gonal numbers generated through its solutions.

KEYWORDS&PHRASES: Pell equations, Ternary quadratic equation.

2010 Mathematics subject classification: 11D09

NOTATIONS: $T_{m,n}$: Polygonal number of rank n with m sides

⁴M.Phil student, Department of Mathematics, Shrimati Indira Gandhi College, Trichy, Tamilnadu, India.

Articles available online http://www.ijoer.in

Vol.2., Issue.1., 2014

METHOD OF ANALYSIS:

Consider the Diophantine equation

$$Z^2 = 3X^2 + Y^2 \tag{1}$$

whose general solutions are

$$X = 2pq$$

$$Y = 3p^{2} - q^{2}$$

$$Z = 3p^{2} + q^{2}$$
(2)

where p and q are non-zero positive integers.

CASE (1):

The choice,

$$4M-1=3p^2+q^2$$
, $N-1=3p^2-q^2$ (3)

in (1) leads to the relation that

"
$$8T_{6,M} - T_{4,N} + 1 = 3$$
 times a square integer"

From (3), the values of ranks of the Hexagonal numbers and Square numbers are respectively given by

$$M = \frac{3p^2 + q^2 + 1}{4}$$
, $N = 3p^2 - q^2$

For integer values of M and N, choose p = 2k - 1, q = 2k

EXAMPLES: TABLE: 1

k	M	N	$8T_{6,M} - T_{4,N} + 1$
2	11	11	$3(24)^2$
3	28	39	$3(60)^2$
4	53	83	3(112) ²
5	86	143	3(180) ²
6	127	219	3(264) ²

CASE (2):

The choice,

$$4M-1=3p^2+q^2$$
, $2N+1=3p^2-q^2$ (4)

in (1) leads to the relation that

"
$$8T_{6,M} - 8T_{3,N} =$$
3 times a square integer"

From (4), the values of ranks of the Hexagonal numbers and Triangular numbers are respectively given by

$$M = \frac{3p^2 + q^2 + 1}{4}$$
, $N = \frac{3p^2 - q^2 - 1}{2}$,

For integer values of M and N, choose p = 2k - 1, q = 2k

Vol.2., Issue.1., 2014

Articles available online http://www.ijoer.in

	EXA	MPLES:	TABLE: 2
k	M	N	$T_{3,M}-3T_{5,N}$
2	11	5	3(24) ²
3	28	19	3(60) ²
4	53	41	3(112) ²
5	86	71	3(180) ²
6	127	109	3(264) ²

CASE (3):

The choice,

$$2M+1=3p^2+q^2$$
, $N=3p^2-q^2$ (5)

in (1) leads to the relation that

"
$$8T_{3,M} - T_{4,N} + 1 = 3$$
 times a square integer"

From (5), the values of ranks of the Triangular numbers and Square numbers are respectively given by

$$M = \frac{3p^2 + q^2 - 1}{2}$$
, $N = 3p^2 - q^2$

For integer values of M and N, choose p=2k-1 , q=2k-1

EXAMPLES: TABLE: 3

k	M	N	$T_{3,M} - T_{4,N} + 1$
2	21	11	3(24) ²
3	55	39	3(60) ²
4	105	83	3(112) ²
5	171	143	3(180) ²
6	253	219	3(264) ²

CASE (4):

The choice,

$$5M - 2 = 3p^2 + q^2$$
, $N = 3p^2 - q^2$ (6)

in (1) leads to the relation that

"
$$5T_{12,M} - T_{4,N} + 4 =$$
 3 times a square integer"

Vol.2., Issue.1., 2014

Articles available online http://www.ijoer.in

From (6), the values of ranks of the numbers and Square numbers are respectively given by

$$M = \frac{3p^2 + q^2 + 2}{5}$$
, $N = 3p^2 - q^2$

For integer values of M and N, choose p = 5k + 1, q = 5k

EVAI	MPLES:	TABLE:	л
EAAI	VIPLES.	I ADLE.	-

k	M	N	$5T_{12,M} - T_{4,N} + 4$
1	27	83	$3(60)^2$
2	93	263	3(220) ²
3	199	543	$3(480)^2$
4	345	923	3(840) ²
5	531	1403	3(1300) ²

CASE (5):

The choice,

$$4M-1=3p^2+q^2$$
, $3N-1=3p^2-q^2$ (7)

in (1) leads to the relation that

"
$$8T_{6,M} - 3T_{8,N} =$$
 3 times a square integer "

From (7), the values of ranks of the Hexagonal numbers and octagonal numbers are respectively given by

$$M = \frac{3p^2 + q^2 + 1}{4}$$
, $N = \frac{3p^2 - q^2 + 1}{3}$

For integer values of M and N, choose p = 6k - 3, q = 6k - 4

EXAMPLES: TABLE: 5

k	M	N	$8T_{6,M} - 3T_{8,N}$
1	8	8	3(12) ²
2	77	60	3(144) ²
3	218	160	3(420) ²
4	431	308	3(840) ²
5	716	504	3(1404) ²

CASE (6):

The choice,

$$2M+1=3p^2+q^2$$
, $3N-1=3p^2-q^2$ (8)

in (1) leads to the relation that

"
$$8T_{3,M} - 3T_{8,N} = 3$$
 times a square integer"

From (8), the values of ranks of the Triangular numbers and octangular numbers are respectively given by

Articles available online http://www.ijoer.in

Vol.2., Issue.1., 2014

$$M = \frac{3p^2 + q^2 - 1}{2}$$
, $N = \frac{3p^2 - q^2 + 1}{3}$

For integer values of M and N, choose p = 3k, q = 3k - 1

	EXAMPLES:		TABLE: 6
k	M	N	$8T_{3,M}-3T_{8,N}$
1	15	8	3(12) ²
2	66	28	3(60) ²
3	153	60	3(144) ²
4	276	104	3(264) ²
5	435	160	3(420) ²

CASE (7):

The choice,

$$M = 3p^2 + q^2$$
, $3N - 1 = 3p^2 - q^2$ (9)

in (1) leads to the relation that

"
$$T_{4,M} - 3T_{8,N} - 1 = 3$$
 times a square integer "

From (9), the values of ranks of the Square numbers and octagonal numbers are respectively given by

$$M = 3p^2 + q^2$$
, $N = \frac{3p^2 - q^2 + 1}{3}$

For integer values of M and N, choose p = 3k, q = 3k - 1

EXAMPLES: TABLE: 7

k	M	N	$T_{4,M} - 3T_{8,N} - 1$
2	133	28	$3(60)^2$
3	307	60	3(144) ²
4	553	104	3(264) ²
5	871	160	3(420) ²
6	1261	228	3(612) ²

CASE (8):

The choice,

$$5M - 2 = 3p^2 + q^2$$
, $2N + 1 = 3p^2 - q^2$ (10)

in (1) leads to the relation that

Articles available online http://www.ijoer.in

Vol.2., Issue.1., 2014

"
$$5T_{12,M} - 8T_{3,N} + 3 = 3$$
 times a square integer "

From (10), the values of ranks of the dodecagonal numbers and Triangular numbers are respectively given by

$$M = \frac{3p^2 + q^2 + 2}{5}$$
, $N = \frac{3p^2 - q^2 - 1}{2}$

For integer values of M and N, choose p = 5k - 2, q = 5k - 1

EAAI	EXAMPLES:		

k	M	N	$5T_{12,M} - 8T_{3,N} + 3$
1	9	5	$3(24)^2$
2	55	55	3(144) ²
3	141	155	3(364) ²
4	267	305	3(684) ²
5	433	505	3(1104) ²

CONCLUSION

To conclude, we may search for other relations to (1) by using special polygonal numbers.

REFERENCES:

- [1] Dickson, L.E., History of theory of numbers, Chelisa publishing company, New York, Vol.2, (1971).
- [2] Kapur, J.N., Ramanujan's Miracles, Mathematical sciences Trust society, (1997).
- [3] Shailesh Shirali, Mathematical Marvels, A primer on Number sequences, University press, (2001).
- [4] Gopalan, M.A., Devibala, Equality of Triangular numbers with special m-gonal numbers, Bulletin of the Allahabad mathematical society, (2006), 25-29.
- [5] Gopalan, M.A., Manju somanath and Vanitha, N., Observations on $X^2=8\alpha^2+Y^2$, Advances in Theoretical and Applied Mathematics, 1(3)(2006), 245-248.
- [6] Gopalan, M.A., and Srividhya,G., Observations on $y^2=2x^2+z^2$ Archimedes J.Math, 2(1),2012, 7-15.