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ABSTRACT
The non-homogeneous cubic equation with three unknowns represented by the

diophantine equation X% — Xy + y2 =192%is analysed for its patterns of non-
zero distinct integral solutions. A few interesting relations between the solutions
and special numbers are exbited.
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Notations:

tm o : Polygonal number of rank n with size m

an : Pyramidal number of rank n with size m

Jn : Jacobsthal number of rank n

o Pronic number of rank n

Gn : Gnomonic number of rank n

Sn : Star number of rank n

Can : Centered Pyramidal number of rank n with size m

& Ctm n : Centered Polygonal number of rank n with size m
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TTn : Truncated tetrahedral number of rank n
TOn : Truncated octahedral number of rank n
HOn : Hauy octahedral number of rank n

H n : Hexnumber of rank n

Mn : Mersenne number of rank n

HGn : Hexagonal number of rank n

SOn : Star number of rank n
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INTRODUCTION
The Diophantine equations offer an unlimited field for research due to their variety[1-3]. In particular,
one may refer [4-23] for cubic equations with three unknowns. This communication concerns with yet another

X2 —xy+y* =197°

interesting equation representing non-homogeneous cubic with three unknowns for
determining its infinitely many non-zero integral points. Also, a few interesting relations among the solutions
are presented.

METHOD OF ANALYSIS:

The ternary non-homogeneous cubic equation to be solved for its distinct non-zero integral solution is

X2 —xy +y? =197° (1)
Pattern:1
Introducing the linear transformations,

X=U+V,y=U-V (2)

in (1) leads to
2 2 3

u®+3v- =19z (3)

Let z=a’ +3b? (4)

Write 19 as

19 =

(7 +i343)(7 - i33) 5
4

Using (4) and (5) in (3) and applying the method of factorization, define
u+i SV=L23\/§)(a+i\/§b)3

Equating the real and imaginary parts, we get

u= 1[7613‘ —27a%h —63ab? + 27b3] (6)
2
V= %[3313 +21a’b—27ab® - 2]b3] (7)

Since our aim is to find an integer solutions, so substitute a = 2A,b = 2B in (4), (6) and (7) the

corresponding integral values of X, Y, Z satisfying (1) are obtained as,

X(A, B) = 40A° — 24A?B — 360AB? + 24B°
y(A B) =16A° —192A’B —144AB” +192B°
(A B) = 4A? +12B?

Properties:

1x(2",1) - 40(-1)"" =12[10J,, —9J,, —90J, —2(-1)*" —30(-1)" +8 |

2.y(A1)-16| P} —15P, +G,, |=0(mod13)

3.2(A,A-1) -4t , =0(mod3)

4.y(AA) +2(A A) — X(A,A) +32P° = 0(mod176)

5.6 2(A,A-1)—3 isa nasty number.
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Pattern i
(3) can be written as,
u? +3v? =19z° x1 (8)
Write 19and 1 as

19= (4+iV3)(4-i3) (9)

1 @+iv3)(1-iV3)
4

(10)

Substituting (4), (9) and (10) in (8) we get,

(U +i3v)(u —iv/3v) = (4 +i/3)(4 —i/3)(a +i~/3b)° (1+i2x/§) (1—i2J§)

Equating the real and imaginary parts, the values of U,V are given by

u(a,b) = %[aa —45a%h - 9ab’ + 45b° |

v(a,b) = 1[5a3 +3a’h - 45ab° — 30° |
2
Substituting these values in (2) the corresponding integral values of X, Y, Z satisfying (1) are obtained as,
x(a,b) = 3a° - 21a’b — 27ab* + 21b°
y(a,b) = —2a° — 24a’b +18ab® + 24b°
z(a,b) =a’® +3b?

Properties:

1. X(Lb) — 42R +96t,,, = 3(mod 27)
2.y(1,b) — 48Ry +12t,, = —2(mod18)
3.X(1, 2b) — 336R° +552t,, = 3(Mod 234)
4.x(2b,2) ~126R° +171t,, = 24(mod 45)
5.y(a,1) + 2P} +9t,, =11(mod13)

Pattern Il
Introducing the linear transformations
U=a+3T,v=a-T (11)
Substituting (11) in (3) we get,
4o +12T°% =197° (12)
Let z =a? +12b? (13)
Write 19 as,

19 =

(14)

(8+iv12)(8-iv12)
4

Using (13) and (14) in (12), we get

V.GEETHA et a




International journal of Engineering Research-Online
A Peer Reviewed International Journal B4l R SRR SEpIoki!
Articles available online http://www.ijoer.in

20 +i12T = w (a+ivi2b)’
Equating the real and imaginary parts, we obtained
2a = 4(a® —36ab’) — 6(3a’b —12b°%)
2T = (a° — 36ab?) +8(3a%h —12b°)

Hence the values of X, Y, Z satisfies (1) are given by
x(a,b) = 5(a® —36ab?) + 2(3a’b —12b*)
y(a,b) = 2(a’® —36ab*) +16(3a°b —12b°)
z(a,b) = a® +12b?

Properties:

1.x(a,a) - y(a,a) +69CP? =0

2.x(a,1) +15(CP? - CP?) - Ct,, , =176(mod181)

3.y(L,b) +144CP? +12S, =-60(mod 72)

a.2(a%,a(a-1) = (t;,)* -3P,

5.x(a,a+1)+5TO, +12(TT, — CP;S) + 30CF’a19 = 6(mod 8)

Instead of (11), consider the linear transformation,

U=a-3T,v=a+T
and write 19 as
(14 +i3v12)(14 - i312)
16

Following the procedure as presented in the above Pattern the corresponding non-zero distinct integral

19=

solutions to (1) are obtained as
x(a,b) = 2(a® — 36ab*) —16(3a°b —12b%)
y(a,b) =14(36ab® —a®) +14(12b° — 3a’b)
z(a,b) = a® +12b?

Pattern IV:
(1) can be written as
(2x—y)? +3y* =767° (15)
One may write 76 as
76 = (8+i2+/3)(8—i24/3) (16)

substituting (16) and (4) in (15), employing the method of factorization, we have
(2% — y) +iN3y = (8 +i2+/3)(a +i/3b)°
Equating the real and imaginary parts, we have
X(a,b) = 5(a* —9ab?) + 3(a’b —b?)
y(a,b) = 2(a® —9ab®) + 24(a’b—b°)
z(a,b) = a* +3b?
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Properties:
1.X(a,a) +3HO, +6P° + H, — y(a,a) — z(a,a) = 0(mod 2)
2.t,, —z(a,a—1) =0(mod3)

3.4P° +6H, —y(a,1) = 2(mod 4)

4.X(L,b) + 46P, — 2P = 2(mod5)

5.6] M, —2(2*,1) | is anasty number.

REMARKABLE OBSERVATIONS:
L.Let (X, Yy, Zy) be the initial solution of (1)

x =19°x, +h
let Yy, =19y, +h (17)
2, =19%z,

be the first solution of (1).
Substituting (17) in (1), we get

h=-19°(X, +Y,) (18)

Using (18) in (17) we obtain the general solution as follows,

EVENORDERED SOLUTION:

X,, =19°"x,,

Yoo =197y,

Z,, =19% Z,, where N =1,2,3...
ODDORDERED SOLUTION:

e

Voot = _193@D X,

2, = —192D Z,, where n=12,3...
2.Let R be a rectangle with sides X, Y such that

L =length of the rectangle,
A =Area of the rectangle,

P =Perimeter of the rectangle,
Then we have the following relations,

L? = A(mod19)
P? =12A(mod19)
3.Employing the solutions (X, Y, Z) of(1), the following relations among the special polygonal ,pyramidal and

some special numbers are obtained.

2 3 3 \2 3
1‘[ 2F)><8—1 ] _ { 2I:)x8—1 J Py + Py = 19( HGZ2 J
1:3,2x—3 t3,2x—3 I:)y+1 I:)y+1 Soz
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2 2 3
ps p5 \( HG,, HG, 3
2 | - 2 L+ | =19 3
t,, t,, )\ SO, SO, L3y
2 2 3
P3 PS P5 P5 5
3, XJ— X]—"+—y:19p—Z
t3,><+1 t3,x+l t3,y t3,y t3,2
6p* ¥ ( eP* \(HG,) (HG,Y 6p )’
4. * - : Y + y = 19 Z
HGX+1 HGx+1 Gy Gy t3,22+l
CONCLUSION
It is worth to mention that instead of (5) and (10) one may write 19 and 1 as

19— A+15V3)(1-i5V3)
4
(1+i44/3)(1-i44/3)
49
(11+i4+/3)(11-i44/3)
169
(11+i5v3)(11-i5v3)
L 196
(13+i343)(13-i3V3)
196
(13+i8+/3)(13-i8v3)
169
(23+i74/3)(23-i7+/3)
676

respectively. Following the procedure as presented in Patternl and Pattern Il , the other patterns of solutions
to (1) are determined. To conclude one may search for other patterns of solutions and their related properties.
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