International journal of Engineering Researth-Online A Peer Reviewed International Journal Articles available online http://www.ijoer.in

Vol.1., Issue.4., 2013

RESEARCH ARTICLE

ON CUBIC DIOPHANTINE EQUATION WITH THREE UNKNOWNS $x^2 - xy + y^2 = 19z^3$

¹M.A.GOPALAN, ²V.GEETHA

¹Department of Mathematics, Shrimathi Indira Gandhi College, Trichirappalli. ²Department of Mathematics, Cauvery College For Women, Trichirappalli.

Article Received: 19/12/2013

Article Revised on:12/01/2014

Article Accepted on:14/01/2014

M.A.GOPALAN

V.GEETHA

ABSTRACT

The non-homogeneous cubic equation with three unknowns represented by the diophantine equation $x^2-xy+y^2=19z^3$ is analysed for its patterns of non-zero distinct integral solutions. A few interesting relations between the solutions and special numbers are exbited.

KEYWORDS: Integral solutions, non-homogeneous cubic equation with three unknowns.

MSC mathematics Subject classification:11D25 Notations:

 $t_{m\,n}\,$: Polygonal number of rank n with size m

 P_n^m : Pyramidal number of rank n with size m

 $oldsymbol{J}_{n}$: Jacobsthal number of rank n

 $P_{\scriptscriptstyle n}$: Pronic number of rank n

 $G_{\!\scriptscriptstyle n}\,$: Gnomonic number of rank n

 S_n : Star number of rank n

 ${\it CP}_{\tt m}^m$: Centered Pyramidal number of rank n with size m

 $Ct_{m\,n}$: Centered Polygonal number of rank n with size m

 TT_n : Truncated tetrahedral number of rank n

 TO_n : Truncated octahedral number of rank n

 HO_n : Hauy octahedral number of rank n

 $H_{\scriptscriptstyle n}$: Hex number of rank n

 M_n : Mersenne number of rank n

 HG_n : Hexagonal number of rank n

 SO_n : Star number of rank n

Articles available online http://www.ijoer.in

Vol.1., Issue.4., 2013

INTRODUCTION

The Diophantine equations offer an unlimited field for research due to their variety[1-3]. In particular, one may refer [4-23] for cubic equations with three unknowns. This communication concerns with yet another

interesting equation $x^2 - xy + y^2 = 19z^3$ representing non-homogeneous cubic with three unknowns for determining its infinitely many non-zero integral points. Also, a few interesting relations among the solutions are presented.

METHOD OF ANALYSIS:

The ternary non-homogeneous cubic equation to be solved for its distinct non-zero integral solution is

$$x^2 - xy + y^2 = 19z^3 (1)$$

Pattern:1

Introducing the linear transformations,

$$x = u + v, \quad y = u - v \tag{2}$$

in (1) leads to

$$u^2 + 3v^2 = 19z^3 \tag{3}$$

Let

$$z = a^2 + 3b^2 \tag{4}$$

Write 19 as

$$19 = \frac{(7 + i3\sqrt{3})(7 - i3\sqrt{3})}{4} \tag{5}$$

Using (4) and (5) in (3) and applying the method of factorization, define

$$u + i\sqrt{3}v = \frac{(7 + i3\sqrt{3})}{2}(a + i\sqrt{3}b)^3$$

Equating the real and imaginary parts, we get

$$u = \frac{1}{2} \left[7a^3 - 27a^2b - 63ab^2 + 27b^3 \right]$$
 (6)

$$v = \frac{1}{2} \left[3a^3 + 21a^2b - 27ab^2 - 21b^3 \right]$$
 (7)

Since our aim is to find an integer solutions, so substitute a=2A,b=2B in (4), (6) and (7) the corresponding integral values of x,y,z satisfying (1) are obtained as,

$$x(A, B) = 40A^{3} - 24A^{2}B - 360AB^{2} + 24B^{3}$$
$$y(A, B) = 16A^{3} - 192A^{2}B - 144AB^{2} + 192B^{3}$$
$$z(A, B) = 4A^{2} + 12B^{2}$$

Properties:

$$1 x(2^{n}, 1) - 40(-1)^{3n} = 12 \left[10J_{3n} - 9J_{2n} - 90J_{n} - 2(-1)^{2n} - 30(-1)^{n} + 8 \right]$$

2.
$$y(A,1) - 16 \left[P_A^3 - 15P_A + G_{2A} \right] \equiv 0 \pmod{13}$$

3.
$$z(A, A-1) - 4t_{10,A} \equiv 0 \pmod{3}$$

4.
$$y(A, A) + z(A, A) - x(A, A) + 32P_A^5 \equiv 0 \pmod{176}$$

5. 6
$$z(A,A-1)-3$$
 is a nasty number.

Articles available online http://www.ijoer.in

Vol.1., Issue.4., 2013

Pattern II

(3) can be written as,

$$u^2 + 3v^2 = 19z^3 \times 1 \tag{8}$$

Write 19and 1 as

$$19 = (4 + i\sqrt{3})(4 - i\sqrt{3}) \tag{9}$$

$$1 = \frac{(1+i\sqrt{3})(1-i\sqrt{3})}{4} \tag{10}$$

Substituting (4), (9) and (10) in (8) we get,

$$(u+i\sqrt{3}v)(u-i\sqrt{3}v) = (4+i\sqrt{3})(4-i\sqrt{3})(a+i\sqrt{3}b)^3 \frac{(1+i\sqrt{3})}{2} \frac{(1-i\sqrt{3})}{2}$$

Equating the real and imaginary parts, the values of u, v are given by

$$u(a,b) = \frac{1}{2} \left[a^3 - 45a^2b - 9ab^2 + 45b^3 \right]$$

$$v(a,b) = \frac{1}{2} \left[5a^3 + 3a^2b - 45ab^2 - 3b^3 \right]$$

Substituting these values in (2) the corresponding integral values of x, y, z satisfying (1) are obtained as,

$$x(a,b) = 3a^{3} - 21a^{2}b - 27ab^{2} + 21b^{3}$$
$$y(a,b) = -2a^{3} - 24a^{2}b + 18ab^{2} + 24b^{3}$$
$$z(a,b) = a^{2} + 3b^{2}$$

Properties:

1.
$$x(1,b) - 42P_b^5 + 96t_{3,b} \equiv 3 \pmod{27}$$

2.
$$y(1,b) - 48P_b^5 + 12t_{3b} \equiv -2 \pmod{18}$$

3.
$$x(1,2b) - 336P_b^5 + 552t_{3,b} \equiv 3 \pmod{234}$$

4.
$$x(2b,1) - 126P_b^3 + 171t_{3,b} \equiv 24 \pmod{45}$$

5.
$$y(a,1) + 2P_a^3 + 9t_{6,a} \equiv 11 \pmod{13}$$

Pattern III:

Introducing the linear transformations

$$u = \alpha + 3T, v = \alpha - T \tag{11}$$

Substituting (11) in (3) we get,

$$4\alpha^2 + 12T^2 = 19z^3 \tag{12}$$

Let
$$z = a^2 + 12b^2$$
 (13)

Write 19 as,

$$19 = \frac{(8 + i\sqrt{12})(8 - i\sqrt{12})}{4} \tag{14}$$

Using (13) and (14) in (12), we get

International journal of Engineering Research-Online

A Peer Reviewed International Journal

Articles available online http://www.ijoer.in

Vol.1., Issue.4., 2013

$$2\alpha + i\sqrt{12}T = \frac{(8 + i\sqrt{12})}{2}(a + i\sqrt{12}b)^3$$

Equating the real and imaginary parts, we obtained

$$2\alpha = 4(a^3 - 36ab^2) - 6(3a^2b - 12b^3)$$

$$2T = (a^3 - 36ab^2) + 8(3a^2b - 12b^3)$$

Hence the values of x, y, z satisfies (1) are given by

$$x(a,b) = 5(a^3 - 36ab^2) + 2(3a^2b - 12b^3)$$

$$y(a,b) = 2(a^3 - 36ab^2) + 16(3a^2b - 12b^3)$$

$$z(a,b) = a^2 + 12b^2$$

Properties:

1.
$$x(a,a) - y(a,a) + 69CP_a^6 = 0$$

2.
$$x(a,1) + 15(CP_a^6 - CP_a^8) - Ct_{14.a} \equiv 176 \pmod{181}$$

3.
$$y(1,b) + 144CP_a^8 + 12S_b \equiv -60 \pmod{72}$$

4.
$$z(a^2, a(a-1)) = (t_{8,a})^2 - 3P_{a^2-1}$$

5.
$$x(a, a+1) + 5TO_a + 12(TT_a - CP_a^{18}) + 30CP_a^{19} \equiv 6 \pmod{8}$$

Instead of (11), consider the linear transformation,

$$u = \alpha - 3T$$
, $v = \alpha + T$

and write 19 as

$$19 = \frac{(14 + i3\sqrt{12})(14 - i3\sqrt{12})}{16}$$

Following the procedure as presented in the above Pattern the corresponding non-zero distinct integral solutions to (1) are obtained as

$$x(a,b) = 2(a^3 - 36ab^2) - 16(3a^2b - 12b^3)$$
$$y(a,b) = 14(36ab^2 - a^3) + 14(12b^3 - 3a^2b)$$
$$z(a,b) = a^2 + 12b^2$$

Pattern IV:

(1) can be written as

$$(2x - y)^2 + 3y^2 = 76z^3 ag{15}$$

One may write 76 as

$$76 = (8 + i2\sqrt{3})(8 - i2\sqrt{3}) \tag{16}$$

substituting (16) and (4) in (15), employing the method of factorization, we have

$$(2x - y) + i\sqrt{3}y = (8 + i2\sqrt{3})(a + i\sqrt{3}b)^3$$

Equating the real and imaginary parts, we have

$$x(a,b) = 5(a^3 - 9ab^2) + 3(a^2b - b^3)$$

$$y(a,b) = 2(a^3 - 9ab^2) + 24(a^2b - b^3)$$

$$z(a,b) = a^2 + 3b^2$$

Articles available online http://www.ijoer.in

Vol.1., Issue.4., 2013

Properties

1.
$$x(a,a) + 3HO_a + 6P_a^6 + H_a - y(a,a) - z(a,a) \equiv 0 \pmod{2}$$

$$2.t_{10,a} - z(a,a-1) \equiv 0 \pmod{3}$$

$$3.4P_a^5 + 6H_a - y(a,1) \equiv 2 \pmod{4}$$

4.
$$x(1,b) + 46P_b - 2P_b^{11} \equiv 2 \pmod{5}$$

5.
$$6 M_{2a} - z(2^a, 1)$$
 is a nasty number.

REMARKABLE OBSERVATIONS:

1.Let (x_0, y_0, z_0) be the initial solution of (1)

$$x_1 = 19^3 x_0 + h$$
Let $y_1 = 19^3 y_0 + h$

$$z_1 = 19^2 z_0$$
 (17)

be the first solution of (1).

Substituting (17) in (1), we get

$$h = -19^3(x_0 + y_0) \tag{18}$$

Using (18) in (17) we obtain the general solution as follows,

EVENORDERED SOLUTION:

$$x_{2n} = 19^{6n} x_0$$
, $y_{2n} = 19^{6n} y_0$, $z_{2n} = 19^{4n} z_0$, where $n = 1, 2, 3...$

ODDORDERED SOLUTION:

$$\begin{split} x_{2n-1} &= -19^{3(2n-1)}\,y_0\,,\\ y_{2n-1} &= -19^{3(2n-1)}\,x_0\,,\\ z_{2n-1} &= -19^{2(2n-1)}\,z_0\,,\quad \text{where } n=1,2,3... \end{split}$$

2.Let R be a rectangle with sides x, y such that

L =length of the rectangle,

A =Area of the rectangle,

P =Perimeter of the rectangle,

Then we have the following relations,

$$L^2 \equiv A \pmod{19}$$

$$P^2 \equiv 12A \pmod{19}$$

3.Employing the solutions (x, y, z) of(1), the following relations among the special polygonal ,pyramidal and some special numbers are obtained.

$$1.\left(\frac{2P_{x-1}^{8}}{t_{3,2x-3}}\right)^{2} - \left(\frac{2P_{x-1}^{8}}{t_{3,2x-3}}\right)\left(\frac{P_{y}^{3}}{P_{y+1}}\right) + \left(\frac{P_{y}^{3}}{P_{y+1}}\right)^{2} = 19\left(\frac{HG_{z^{2}}}{SO_{z}}\right)^{3}$$

Articles available online http://www.ijoer.in

Vol.1., Issue.4., 2013

$$2 \cdot \left(\frac{P_{x}^{5}}{t_{3,x}}\right)^{2} - \left(\frac{P_{x}^{5}}{t_{3,x}}\right) \left(\frac{HG_{y^{2}}}{SO_{y}}\right) + \left(\frac{HG_{y^{2}}}{SO_{y}}\right)^{2} = 19 \left(\frac{3P_{z}^{3}}{t_{3,y+1}}\right)^{3}$$

$$3 \cdot \left(\frac{P_{x}^{3}}{t_{3,x+1}}\right)^{2} - \left(\frac{P_{x}^{3}}{t_{3,x+1}}\right) \left(\frac{P_{y}^{5}}{t_{3,y}}\right) + \left(\frac{P_{y}^{5}}{t_{3,y}}\right)^{2} = 19 \left(\frac{P_{z}^{5}}{t_{3,z}}\right)^{3}$$

$$4 \cdot \left(\frac{6P_{x}^{4}}{HG_{x+1}}\right)^{2} - \left(\frac{6P_{x}^{4}}{HG_{x+1}}\right) \left(\frac{HG_{y}}{G_{y}}\right) + \left(\frac{HG_{y}}{G_{y}}\right)^{2} = 19 \left(\frac{6P_{z}^{4}}{t_{3,2z+1}}\right)^{3}$$

CONCLUSION

It is worth to mention that instead of (5) and (10) one may write 19 and 1 as

$$19 = \frac{(1+i5\sqrt{3})(1-i5\sqrt{3})}{4}$$

$$\begin{cases} \frac{(1+i4\sqrt{3})(1-i4\sqrt{3})}{49} \\ \frac{(11+i4\sqrt{3})(11-i4\sqrt{3})}{169} \\ \frac{(11+i5\sqrt{3})(11-i5\sqrt{3})}{196} \\ \frac{(13+i3\sqrt{3})(13-i3\sqrt{3})}{196} \\ \frac{(13+i8\sqrt{3})(13-i8\sqrt{3})}{169} \\ \frac{(23+i7\sqrt{3})(23-i7\sqrt{3})}{676} \end{cases}$$

respectively. Following the procedure as presented in PatternI and Pattern II , the other patterns of solutions to (1) are determined. To conclude one may search for other patterns of solutions and their related properties. **REFERENCES**

- [1]. Dickson.L.E., "History of the Theory of Numbers", Vol 2 Diophantine analysis, .New York, Dover, 2005.
- [2]. Mordell.L.J., "Diophantine Equations", Academic Press, New York, 1969.
- [3]. Carmichael.R.D., "The Theory of numbers and Diophantine Analysis", New York, 1959.
- [4]. Gopalan. M.A. and Janaki.G., "Integral solutions of $x^2 y^2 + xy = (m^2 5n^2)z^3$, Antarctica J Math.,7(1), 2010,63-67.
- [5]. Gopalan.M.A. and Shanmuganantham.P., On the Equation $x^2 y^2 + xy = (n^2 + 4n 1)z^3$, Bulletin of Pure and Applied Sciences, Vol.29E, Issue 2, 2010, 231-235,.
- [6]. Gopalan M.A., and Vijayasankar.A., Integral solutions of Ternary cubic equation $x^2 + y^2 xy + 2(x + y + 2) = z^3$ Antarctica J math Vol 7., No.4., 2010,455-460.

Vol.1., Issue.4., 2013

Articles available online http://www.ijoer.in

- [7]. Gopalan. M.A., and Kaligarani.J., Integral solutions of Ternary cubic equation $x^3 + y^3 + 4z^3 = 3xy(x+y)$ Antarctica J Math., 7(3)., 2010,311-315.
- [8]. Gopalan.M.A., and Pandichelvi.V., On Ternary cubic Diophantine equation $y^2 + gz^2 = (k^2 + g)z^3$, Impact J Sci Tech., Vol.4 No.4, 2010,117-123.
- [9]. Gopalan.M.A., and Pandichelvi.V., Observations on Ternary cubic equation $x^3 + y^3 + x^2 y^2 = 4(z^2 + z^3)$, Archimedes J Math., Vol.1 No.1,2011,31-37.
- [10]. Gopalan.M.A. and Shanmuganantham.P., On the Equation $x^2 + ay^2 = (a+1)z^3$ Archimedes J Math., Vol.1 No.1,2011,73-77.
- [11]. Gopalan.M.A., and Srividhya.G., Integral solutions of the ternary cubic diophantine equation $x^3 + y^3 = z^2$, Acta Ciencia indica, Vol XXXVII M No.4,2011,805.
- [12]. Gopalan M.A., Vidhyalakshmi.S and Vijayasankar.A., Integral solutions of Ternary cubic equation $x^2 + y^2 xy + 2(x + y + 2) = (k^2 + 3)z^3$, Archimedes J Math., Vol.1 No.1.,2011, 59-65.
- [13]. Gopalan.M.A., and Sangeetha .G., On the Ternary cubic Diophantine equation $y^2 = Dx^2 + z^3$, Archimedes J Math., Vol.1 No.1,2011,7-14.
- [14]. Gopalan.M.A., and Sivakami.B, Integral solutions of the ternary cubic equation $4x^2-4xy+6y^2=\left\lceil (k+1)^2+5\right\rceil w^3$, Impact J Sci Tech., Vol 6, No.1,2012,15-22
- [15]. Gopalan.M.A., and Sivakami.B, On the ternary cubic diophantine equation $2xz = y^2(x+z)$, Bessel J Math , Vol 2, No.3,2012,171-177.
- [16]. Gopalan .M.A., Vijayalakshmi.R, Integral solutions on the Ternary cubic equation $x^3 + y^3 + 16(x + y) = 16z^3$, Antarctica J Math., 9(7),2012,607-612.
- [17]. Gopalan.M.A., Vidhyalakshmi.S., Sumathi.G., On the homogeneous cubic equation with three unknowns $x^3+y^3=14z^3+3(x+y)$, Discovery Science, Vol.,2, No.4,Oct 2012,37-39.
- [18]. Gopalan.M.A., Vidhyalakshmi.S., and Usharani.T.R., Integral solutions of non-homogeneous ternary cubic equation $ax^2 + by^2 = (a+b)z^3$, Diophantus J Math 2(1),2013,31-38.
- [19]. Gopalan.M.A., and Geetha.K., On the Ternary cubic Diophantine equation $x^2 + y^2 xy = z^3$, Bessel J Math., 3(2),2013,119-123.
- [20]. Gopalan .M.A., Vidhyalakshmi.S., Kavitha.A., Observation on the Ternary cubic equation $x^2 + y^2 + xy = 12z^3$, Antarctica J Math., 10(5),2013, 453-460.
- [21]. Gopalan.M.A., Vidhyalakshmi., Lakshmi.K., Lattice Points on the non-homogeneous cubic equation $x^3 + y^3 + z^3 + (x + y + z) = 0$, Impact J Sci Tech., Vol7, No.1,2013,21-25.
- [22]. Gopalan.M.A., Vidhyalakshmi.S., Lakshmi.K., ., Lattice Points on the non-homogeneous cubic equation $x^3 + y^3 + z^3 (x + y + z) = 0$, Impact J Sci Tech., Vol7, No.1,2013,51-55.
- [23]. Gopalan.M.A., Vidhyalakshmi.S., and Mallika.S., On the Ternary non-homogeneous cubic equation $x^3 + y^3 3(x + y) = 2(3k^2 2)z^3$, Impact J Sci Tech., Vol7, No.1,2013,41-45.